Taşıyıcı Sistemlerin Çevresel Etki ve Yerel Bağlam Kapsamında Değerlendirilmesi
Year 2025,
Volume: 10 Issue: 2, 1154 - 1163, 27.12.2025
Neriman Gül Çelebi
,
Ümit Arpacıoğlu
Abstract
Yapı endüstrisi, ve özellikle toplam yapı elemanlarının en büyük yüzdesini oluştuan strüktürel elemanlar, büyük miktarlarda enerji tüketmekte ve emisyonlar üreterek çevre üzerinde büyük bir yüke neden olmaktadır. Bu açıdan, taşıyıcı sistemlerin çevresel etki bağlamında değerlendirilmesi büyük bir öneme sahiptir. Aynı zamanda, yapılı çevre ve fiziksel çevre özellikleri göz önünde bulundurulması gereken faktörlerdir. Bu çalışmada topografik etki değerleri ve yaşam döngüsü çevresel etkisi doğrultusunda bir karar destek sistemi geliştirilmiştir. Aynı zamanda yaşam döngüsü çevresel performasını etkileyecek erişilebilirlik parametreleri de sistem sınırları içerisinde açıkça değerlendirilmekte ve senaryo analizleri gerçekleştirilmektedir. Geliştirilen matematiksel yöntem ışığında farklı senaryolar için farklı alternatif taşıyıcı sistemlerin avantajlı olduğu görülmektedir. Topografya & ulaşım ağı ve erişilebilirlik faktörleri bütünleşik yaklaşımı yerel bağlamın karar mekanizması üzerindeki etksini göstermektedir. Literatürde yaşam döngüsü kapsamında bütünleşik matematiksel çalışmalar oldukça sınırlıdır, bu açıdan bu çalışma büyük bir öneme sahiptir.
References
-
Balasbaneh, A. T. & Ramli, M. Z. (2020). A comparative life cycle assessment (LCA) of concrete and steel-prefabricated prefinished volumetric construction structures in Malaysia. Environmental Science and Pollution Research, 27(34), 43186–43201. Doi: https://doi.org/10.1007/S11356-020-10141-3/METRICS
-
Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G. & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy
analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29,
394–416. Doi: https://doi.org/10.1016/J.RSER.2013.08.037
-
Dubuc, S. (2007). GIS-based accessibility analysis for network optimal location model. Open Edition Journals,
2007. Doi: https://doi.org/10.4000/CYBERGEO.12653
-
European Committee for Standardization. (2011). Sustainability of construction works—Assessment of
environmental performance of buildings—Calculation method, Brussels (Standard No. EN 15978:2011).
-
European Commission (2018). Environmental Benchmarks for Buildings. JRC Technical Report. ISBN 978-92-79-
80970-5.
-
Fay, R. & Treloar, G. (2003). Life Cycle Energy Analysis— A measure of the environmental impact of buildings. The
Environment Design Guide.
-
Guggemos, A. A. & Horvath, A. (2005). Comparison of Environmental Effects of Steel- and Concrete-Framed
Buildings. Journal of Infrastructure Systems, 11(2), 93–101. Doi: Doi: https://doi.org/10.1061/(ASCE)1076-
0342(2005)11:2(93)
-
IEA, ANNEX 57. (2016). Evaluation of Embodied Energy and CO2eq for Building Construction (Annex 57). Access
Address (01.01.2025): https://www.iea-ebc.org/projects/project?AnnexID=57
-
Kim, S., Moon, J. H., Shin, Y., Kim, G. H. & Seo, D. S. (2013). Life comparative analysis of energy consumption and
CO2 emissions of different building structural frame types. The Scientific World Journal, 2013. Doi:
https://doi.org/10.1155/2013/175702
-
Nassim, M. (2024). Optimising sustainability in building design from a life cycle perspective (Doctoral thesis).
University of New South Wales, Department of Engineering, Australia.
-
Nematchoua, M.K., Yvon, A., Roy. S.E.J., Ralijaona, C.G., Mamiharijaona, R., Razafinjaka, J.N. & Tefy, R. (2019). A
review on energy consumption in the residential and commercial buildings located in tropical regions of Indian
Ocean: a case of Madagascar island. J Energy Storage, 24:1–15
-
Oladazimi, A., Mansour, S. & Hosseinijou, S. A. (2020). Comparative Life cycle assessment of steel and concrete
construction frames: A case study of two residential buildings in Iran. Buildings 2020, Vol. 10, Page 54, 10(3). Doi:
https://doi.org/10.3390/BUILDINGS10030054
-
Prah, K. & Shortridge, A. M. (2023). Vertical vs. horizontal fractal dimensions of roads in relation to relief
characteristics. ISPRS International Journal of Geo-Information 2023, Vol. 12, Page 487, 12(12), 487. Doi:
https://doi.org/10.3390/IJGI12120487
-
Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and
Buildings, 42(10), 1592–1600. Doi: https://doi.org/10.1016/J.ENBUILD.2010.05.007
-
RIBA. (2019). RIBA Sustainable Outcomes Guide. Access Address (01.01.2025): https://www.architecture.com/
-
Schröder, M. & Cabral, P. (2019). Eco-friendly 3D-Routing: A GIS based 3D-Routing-Model to estimate and
reduce CO2-emissions of distribution transports. Computers, Environment and Urban Systems, 73, 40–55. Doi:
https://doi.org/10.1016/J.COMPENVURBSYS.2018.08.002
-
Sharma, A., Saxena, A., Sethi, M., Shree, V. & Varun. (2011). Life cycle assessment of buildings: A review. Renewable
and Sustainable Energy Reviews, 15(1), 871–875. Doi: https://doi.org/10.1016/J.RSER.2010.09.008
-
Sphera. (n.d.). Life Cycle Assessment (LCA) Software. Access Address (01.01.2025): https://sphera.com/product-
stewardship/life-cycle-assessment-software-and-data/?nab=1
-
Stek, E., Delong, D., McDonnell, T. & Rodriguez, J. (2011). Life cycle assessment using ATHENA Impact Estimator for
buildings: A case study. Structures Congress 2011-Proceedings of the 2011 Structures Congress, 483–494. Doi:
https://doi.org/10.1061/41171(401)42
-
Thomas, A. (2017). Modeling occupant behavior, systems life cycle performance, and energy consumption
nexus in buildings using multi-method distributed simulation (Doctoral thesis). University of Michigan,
Department of Civil Engineering, USA.
-
Xing, S., Xu, Z. & Jun, G. (2008). Inventory analysis of LCA on steel- and concrete-construction office buildings.
Energy and Buildings, 40(7), 1188–1193. Doi: https://doi.org/10.1016/J.ENBUILD.2007.10.016
-
Zuo, J., Pullen, S., Rameezdeen, R., Bennetts, H., Wang, Y., Mao, G., Zhou, Z., Du, H. & Duan, H. (2017). Green building
evaluation from a life-cycle perspective in Australia: A critical review. Renewable and Sustainable Energy
Reviews, 70, 358–368. Doi: https://doi.org/10.1016/J.RSER.2016.11.251
Evaluation of Load-Bearing Systems in the Scope of Environmental Impact and Local Context
Year 2025,
Volume: 10 Issue: 2, 1154 - 1163, 27.12.2025
Neriman Gül Çelebi
,
Ümit Arpacıoğlu
Abstract
The construction industry, and particularly structural elements, which constitute the largest percentage of total building elements, consume large amounts of energy and produce emissions, placing a significant burden on the environment. Therefore, evaluating structural systems in terms of environmental impact is crucial. Furthermore, the built environment and physical environmental characteristics are factors that must be considered. This study develops a decision support system based on topographic impact values and lifecycle environmental impact. Accessibility parameters that will impact lifecycle environmental performance are also explicitly evaluated within the system boundaries, and scenario analyses are conducted. The developed mathematical method demonstrates the advantage of different alternative structural systems in different scenarios. The integrated approach of topography, transportation network, and accessibility factors demonstrates the impact of the local context on decision-making. While integrated mathematical studies within the lifecycle context are quite limited in the literature, this study is considered of significant importance.
Ethical Statement
This study is produced from the ongoing doctoral thesis under the advisement of Prof. Dr. Ümit Arpacıoğlu at Mimar Sinan Fine Arts University, Department of Architecture. The article complies with national and international research and publication ethics. Ethics committee approval was not required for the study.
References
-
Balasbaneh, A. T. & Ramli, M. Z. (2020). A comparative life cycle assessment (LCA) of concrete and steel-prefabricated prefinished volumetric construction structures in Malaysia. Environmental Science and Pollution Research, 27(34), 43186–43201. Doi: https://doi.org/10.1007/S11356-020-10141-3/METRICS
-
Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G. & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy
analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29,
394–416. Doi: https://doi.org/10.1016/J.RSER.2013.08.037
-
Dubuc, S. (2007). GIS-based accessibility analysis for network optimal location model. Open Edition Journals,
2007. Doi: https://doi.org/10.4000/CYBERGEO.12653
-
European Committee for Standardization. (2011). Sustainability of construction works—Assessment of
environmental performance of buildings—Calculation method, Brussels (Standard No. EN 15978:2011).
-
European Commission (2018). Environmental Benchmarks for Buildings. JRC Technical Report. ISBN 978-92-79-
80970-5.
-
Fay, R. & Treloar, G. (2003). Life Cycle Energy Analysis— A measure of the environmental impact of buildings. The
Environment Design Guide.
-
Guggemos, A. A. & Horvath, A. (2005). Comparison of Environmental Effects of Steel- and Concrete-Framed
Buildings. Journal of Infrastructure Systems, 11(2), 93–101. Doi: Doi: https://doi.org/10.1061/(ASCE)1076-
0342(2005)11:2(93)
-
IEA, ANNEX 57. (2016). Evaluation of Embodied Energy and CO2eq for Building Construction (Annex 57). Access
Address (01.01.2025): https://www.iea-ebc.org/projects/project?AnnexID=57
-
Kim, S., Moon, J. H., Shin, Y., Kim, G. H. & Seo, D. S. (2013). Life comparative analysis of energy consumption and
CO2 emissions of different building structural frame types. The Scientific World Journal, 2013. Doi:
https://doi.org/10.1155/2013/175702
-
Nassim, M. (2024). Optimising sustainability in building design from a life cycle perspective (Doctoral thesis).
University of New South Wales, Department of Engineering, Australia.
-
Nematchoua, M.K., Yvon, A., Roy. S.E.J., Ralijaona, C.G., Mamiharijaona, R., Razafinjaka, J.N. & Tefy, R. (2019). A
review on energy consumption in the residential and commercial buildings located in tropical regions of Indian
Ocean: a case of Madagascar island. J Energy Storage, 24:1–15
-
Oladazimi, A., Mansour, S. & Hosseinijou, S. A. (2020). Comparative Life cycle assessment of steel and concrete
construction frames: A case study of two residential buildings in Iran. Buildings 2020, Vol. 10, Page 54, 10(3). Doi:
https://doi.org/10.3390/BUILDINGS10030054
-
Prah, K. & Shortridge, A. M. (2023). Vertical vs. horizontal fractal dimensions of roads in relation to relief
characteristics. ISPRS International Journal of Geo-Information 2023, Vol. 12, Page 487, 12(12), 487. Doi:
https://doi.org/10.3390/IJGI12120487
-
Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and
Buildings, 42(10), 1592–1600. Doi: https://doi.org/10.1016/J.ENBUILD.2010.05.007
-
RIBA. (2019). RIBA Sustainable Outcomes Guide. Access Address (01.01.2025): https://www.architecture.com/
-
Schröder, M. & Cabral, P. (2019). Eco-friendly 3D-Routing: A GIS based 3D-Routing-Model to estimate and
reduce CO2-emissions of distribution transports. Computers, Environment and Urban Systems, 73, 40–55. Doi:
https://doi.org/10.1016/J.COMPENVURBSYS.2018.08.002
-
Sharma, A., Saxena, A., Sethi, M., Shree, V. & Varun. (2011). Life cycle assessment of buildings: A review. Renewable
and Sustainable Energy Reviews, 15(1), 871–875. Doi: https://doi.org/10.1016/J.RSER.2010.09.008
-
Sphera. (n.d.). Life Cycle Assessment (LCA) Software. Access Address (01.01.2025): https://sphera.com/product-
stewardship/life-cycle-assessment-software-and-data/?nab=1
-
Stek, E., Delong, D., McDonnell, T. & Rodriguez, J. (2011). Life cycle assessment using ATHENA Impact Estimator for
buildings: A case study. Structures Congress 2011-Proceedings of the 2011 Structures Congress, 483–494. Doi:
https://doi.org/10.1061/41171(401)42
-
Thomas, A. (2017). Modeling occupant behavior, systems life cycle performance, and energy consumption
nexus in buildings using multi-method distributed simulation (Doctoral thesis). University of Michigan,
Department of Civil Engineering, USA.
-
Xing, S., Xu, Z. & Jun, G. (2008). Inventory analysis of LCA on steel- and concrete-construction office buildings.
Energy and Buildings, 40(7), 1188–1193. Doi: https://doi.org/10.1016/J.ENBUILD.2007.10.016
-
Zuo, J., Pullen, S., Rameezdeen, R., Bennetts, H., Wang, Y., Mao, G., Zhou, Z., Du, H. & Duan, H. (2017). Green building
evaluation from a life-cycle perspective in Australia: A critical review. Renewable and Sustainable Energy
Reviews, 70, 358–368. Doi: https://doi.org/10.1016/J.RSER.2016.11.251