Research Article
BibTex RIS Cite

Ağır Metaller ile Kirlenmiş Toprağın İyileştirilmesinde Vetiver Grass (Vetiveria zizanioides (Linn.) Nash) ve Solucanların Kullanılması

Year 2016, , 1 - 11, 03.10.2016
https://doi.org/10.30785/mbud.282564

Abstract

Dünya
üzerindeki yaşamın kalitesi çevrenin kalitesi ile ayrılmaz bir bütündür.
Günümüzde organik ve inorganik kirlenme çevre ve insan sağlığı üzerinde önemli
sorunlar meydana getirmektedir. Kentleşmenin artması ve sanayinin gelişmesi ile
insan odaklı ağır metal kullanımı giderek artmıştır. Ağır metaller toprak ve
suya karışarak besin zincirini üzerinde olumsuz etkilere sahiptir. Son yıllarda
kirlenmiş toprak ve suyun iyileştirilmesi için güçlü ve etkili teknikler
geliştirilmiştir. Ayrıca bu tekniklerin yerinde, etkili, ekonomik ve çevre
dostu olması önemlidir. Bu nedenle fitoremediasyon ve biyoremediasyon
teknikleri ile yapılan çalışmalar ve literatürlerde önemli yer tutmuştur.  Bu çalışma ile su, toprak ve çevre üzerinde
ağır metallerin uzaklaştırılması faaliyeti olarak kullanılan fitoremediasyon ve
biyoremediasyon konuları hakkında bilgi verilecektir. Ayrıca dünyaca bilinen ve
fitoremediasyon bitkisi olan Vetiver çimi
(Vetiveria zizanioides (Linn.) Nash) ağır metal kirlenmesini gidermesi için
kullanımından ve biyoremediasyon organizması olan bazı solucanların ağır metal
kirleniminin temizlenmesinde
kullanılabilirliği tartışılmıştır. 

_______________________________________________________

Remediation Contaminated Soil by Heavy Metal: Vetiver Grass (Vetiveria zizanioides (Linn.) Nash) and
Earthworms

Abstract

Quality of
life and environment of the world are inseparable. Nowadays, organic and
inorganic contamination produces major problems on the environment and human
health. People-oriented heavy metal usage has increased due to urbanization and
industrial development. Heavy metals have negative impacts on the soil and
water, blending into the food chain. Powerful and effective techniques for
treating contaminated soil and water have been developed in recent years. It is
important that these techniques are appropriate, effective and eco-friendly.
Therefore phytoremediation and bioremediation techniques in the studies and
literatures take an important place. With this study, phytoremediation and
bioremediation will be informed about topics that used as removal of heavy
metals activities on water, soil and environment. In addition, worldwide known
and phytoremediation plants Vetiver grass (Vetiveria zizanioides (Linn.) Nash)  were discussed to use for removal of heavy
metal contamination. Then bioremediation organisms earthworms were discussed to
use for purified of heavy metal contamination.

References

  • Aksorn, E. and Chitsomboon, B. (2013). Bioaccumulation of heavy metal uptake by two different Vetiver grass (Vetiveria zizanioides and Vetiveria nemoralis) species. African Journal of Agricultural Research, 8(24): 3166-3171.
  • Antiochia, R., Campanella, L., Ghezzi, P. and Movassaghi, K. (2007). The use of vetiver for remediation of heavy metal soil contamination. Anal Bioanal Chem, 388: 947–956.
  • Arthur, E., Rice, P., Rice, P., Anderson, T., Baladi, S., Henderson, K. and Coats, J. (2005). Phytoremediation: An overview. Crit. Rev. Plant Sci., 24: 109-122.
  • Aybar, M., Bilgin, A. ve Sağlam, B. (2015). Fitoremediasyon Yöntemi İle Topraktaki Ağır Metallerin Giderimi. Doğal Afetler ve Çevre Dergisi, 1(1-2): 59-65.
  • Baş, A.L. ve Demet, Ö. (1992). Çevresel Toksikoloji Yönünden Bazı Ağır Metaller. Çevre Dergisi, 5: 42-46.
  • Bohlen, P.J., Parmalee, R. and Blair, J. (2004). Integrating the effects of earthworms on nutrient cycling across spatial and temporal scales. In C. Edwards, ed. Earthworm Ecology, 161-180.
  • Boopathy, R. (2000). Factors limiting bioremediation Technologies. Bioresource Technology, 74: 63-67.
  • Brown, G.G., Barois, I. and Lavelle, P. (2000). Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol., 36(3): 98-177.
  • Butt, K.R., Lowe, C.N., Frederickson, J., and Moffat, A.J. (2004). The development of sustainable earthworm populations at Calvert landfill site. UK. Land Degrad Dev., 15: 27-36.
  • Chen, H.M., Zheng, C.R., Tu, C. and Shen, Z.G. (2000). Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 41(1-2): 229-234.
  • Chowdhury, S., Bala, N.N. and Dhauria, P. (2012). Bioremediation-A Natural Way For Cleaner Environment. International Journal of Pharmaceutical, Chemical and Biological Sciences, 2(4): 600-611.
  • Cındık, Y. (2012). Trabzon İli Maçka İlçesi Esiroğlu Beldesinde Erozyan Açık Şev Alanlarda Vetiver grass (Vetiveria zizanioides (Linn.) Nash ) Bitkisinin Erozyon Önleme Olanaklarının Araştırılması. Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon.
  • Contreras-Ramos, S.M., Alvarez-Bernal, D. and Dendooven, L. (2006). Eisenia fetida Increased Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from Soil. Environmental Pollution, Elsevier Pub., 141: 396-401.
  • Cunnigham, S.D., Anderson, T.A., Schwab, P. and Hsu, F.C. (1996). Phytoremediation of soils contaminated with organic pollutants. Adv. Agronomy, 56: 55-114.
  • Daia, J., Becquerb, T., Rouillerc, J.H., Reversata, G., Bernhard-Reversata, F., Nahmania, J. and Lavellea, P. (2004). Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biology & Biochemistry, 36: 91-98.
  • Damodaran, D., Suresh, G. and Mohan B, R. (2011). Bioremediation of Soil by Removing Heavy Metals Using Saccharomyces Cerevisiae. 2nd International Conference on Environmental Science and Technology, Singapore.
  • Danh, L.T., Truong, P., Mammucari, R., Tran, T. and Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A Choice Plant For Phytoremediation of Heavy Metals And Organic Wastes. International Journal of Phytoremediation, 11: 664-691.
  • Edwards, C.A. (1995). Historical overview of vermicomposting. Biocycle, 36(9): 56-8.
  • Edwards, C.A. and Bohlen, C.J. (1996). Biology and Ecology of Earthworms. 3rd ed. London: Chapman & Hall.
  • EPA. (2001). Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup. USEPA (United States Environmental Protection Agency), Washington DC.
  • Etim, E.E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3): 120-136.
  • Evanko, C.R. and Dzombak, D.A. (1997). Remediation of Metals-Contaminated Soils and Groundwater. Technology Evaluation Report, E Series: TE-97-01, Ground-Water Remediation Technologies Analysis Center.
  • Frick, C.M., Farrell, R.E. and Germida, J.J. (1999). Assessment of Phytoremediation as an In-Situ Technique for Cleaning Oil-Contaminated Sites. Department of Soil Science University of Saskatchewan, Saskatoon, SK Canada.
  • Garbisu, C. and Alkorta, I. (2003). Basic concepts on heavy metal soil bioremediation. The European Journal of Mineral Processing and Environmental Protection, 3(1): 58-66.
  • Gerrard, M.A. (2008). The ability of Vetiver grass to act as a primary purifier of waste water; an answer to low cost sanitation and fresh water pollution. The Vetiver Network International, Texas.
  • Hamutoğlu, R., Dinçsoy, A.B., Cansaran-Duman, D. ve Aras, S. (2012). Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69(4): 235-53.
  • Hartenstein, R., Neuhauser, E.F. and Collier, J. (1980). Accumulation of heavy metals in the earthworm E. foetida. J Environ Qual, 9: 23-26.
  • Henry, J.R. (2000). An Overview of the Phytoremediation of Lead and Mercury. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, D.C.
  • Hickman, Z.A. and Reid, B.J. (2008). Earthworm assisted bioremediation of organic contaminants. Environ. Int. 34: 1072-1081.
  • Hidalgo, P. (1999). Earthworm castings increase germination rate and seedling development of cucumber. Mississippi Agricultural and Forestry Experiment Station, Research Report; 22(6).
  • Hopkin, S.P. (1989). Ecophysiology of Metals in Terrestrial Invertebrates. London, Elsevier.
  • İordache, M. and Borza, I. (2012). The bioremediation potential of earthworms (Oligochaeta: Lumbricidae) in a soil polluted with heavy metals. Journal of Food, Agriculture & Environment 10(2): 1183-1186.
  • İleri, R. (2000). Çevre Biyoteknolojisi. 1. Baskı. Adapazarı: Değişim Yayınları: 501-22.
  • Jian, C., Yang, Z., Su, Y., Han, F.X. and Monts, D.L. (2011). Phytoremediation Of Heavy Metal/Metalloid-Contaminated Soils. In Contaminated Soils: Environmental Impact, Disposal and Treatment., Ed: Robert V. Steinberg, Chapter 6, Nova Science Publishers, Inc., NY.
  • Kaviraj Sharma, S. (2003). Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresource Technology, 90: 169-73.
  • Khan, A.G. (2003). Vetiver grass as an Ideal Phytosymbiont for Glomalian Fungi for Ecological Restoration of Heavy Metal Contaminated Derelict Land. Proceedings of Third Internatioal Vetiver Conference (ICV-3), Guangzhou, China.
  • Kocaer, F.O. ve Başkaya, H.S, (2003). Metallerle Kirlenmiş Toprakların Temizlenmesinde Uygulanan Teknolojiler. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 8(1): 121-131.
  • Lai, H.Y. and Chen, Z.S. (2004). Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55: 421–430.
  • Lavelle, P., Charpentier, F., Villenave, C., Rossi, J.-P., Derouard, L., Pashanasi, B., Andr´e, J., Ponge, J.-F. and Bernier, N. (2004). Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades. In C. Edwards, ed. Earthworm Ecology. Boca Raton, FL: CRC Press LLC.
  • Malik, A. (2006). Environmental Microbiology: Bioremediation. National Science Digital Library, http://nsdl.niscair.res.in/jspui/bitstream/123456789/659/1/Bioremediation.pdf, Erişim Tarihi: 2.06.2016.
  • Malley, C., Nair, J. and Ho, G. (2006). Impact of heavy metals on enzymatic activity of substrate and on composting worms Eisenia fetida. Bioresource Technology 97: 1498–1502.
  • Marques, A.G.C., Rangel, A.O.S.S. and Castro, P.L. (2009). Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Critical Reviews in Environmental Science and Technology, 39(8): 622-654.
  • Montinaro, S., Concas, A., Pisu, M. And Cao, G.,(2012). Remediation of Heavy Metals Contaminated Soils by Ball Milling. Chemical Engineering Transactions, 28: 187-192.
  • Moosavi, S.G. and Seghatoleslami, M.J. (2013). Phytoremediation: A review. Adv. Agri. Biol. 1(1): 5-11.
  • Mudhiriza, T., Mapanda, F., Mvumi, B.M., and Wuta, M. (2015). Removal of nutrient and heavy metal loads from sewage effluent using vetiver grass, Chrysopogon zizanioides (L.) Roberty. Water SA, 41(4): 457-463.
  • Munroe, G. (2007). Manual of On-farm Vermicomposting and Vermiculture. Publication of Organic Agriculture, Centre of Canada, Nova Scotia.
  • NRC. (1993). Vetiver Grass: A Thin Green Line against Erosion, National Research Council Board on Science and Techonology for International Development. National Academy Press, Washington, D.C.
  • Okcu, M., Tozlu, E., Kumlay, A.M. ve Pehluvan, M. (2009). Ağır Metallerin Bitkiler Üzerine Etkileri. Alınteri, 17(B): 14-26.
  • Okrent, D. (1999). On intergenerational equity and its clash with intragenerational equity and on the need for policies to guide the regulation of disposal of wastes and other activities posing very long time risks. Risk Analysis, 19: 877-901.
  • Özay, C. ve Mammadov, R. (2013). Ağır Metaller ve Süs Bitkilerinin Fitoremediasyonda Kullanılabilirliği. BAÜ Fen Bil. Enst. Dergisi, 15(1): 67-76.
  • Parthasarathi, K., Balamurugan, M. and Ranganathan, L.S. (2008). Influence of vermicompost on the physico-chemical and biological properties in different types of soil along with yield and quality of the pulse crop–blackgram. Iran. J. Environ. Health. Sci. Eng., 2008, Vol. 5, No. 1, pp. 51-58.
  • Pashanasi, B., Lavelle, P., Alegre, J. and Charpentier, F. (1996). Effect of the endogeic earthworm, Pontoscolex corethrurus on soil chemical characteristics and plant growth in a low-input tropical agroecosystem. Soil Biology & Biochemistry, 28(6): 801-8.
  • Pilon-Smits, E.A.H. and Freeman, J.L. (2006). Environmental Cleanup using Plants: Biotechnological Advances and Ecological Considerations. Frontiers in Ecology and the Environment, 4: 203-210.
  • Riggle, D. and Holmes, H. (1994). New herizons for commercial vermiculture. Biocycle, 35(10): 58-62.
  • Roongtanakiat, N. (2009). Vetiver Phytoremediation for Heavy Metal Decontamination. PRVN Tech. Bull. No. 2009/1. ORDPB, Bangkok, Thailand.
  • Roongtanakiat, N. and Chairoj, P. (2001). Uptake Potential of Some Heavy Metals by Vetiver Grass. Kasetsart J. (Nat. Sci.), 35: 46-50.
  • Salt, D.E., Blaylock, M., Kumar, N., Dushenkov, V., Ensley, B.D., Chet, I. and Raskin, I. (1995). Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Bio/technology, 13: 468-474.
  • Shahmansouri, M.R., Pourmoghadas, H., Parvaresh, A.R. and Alidadi, H. (2005). Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida) in the Sewage Sludge Vermicomposting. Iranian J Env Health Sci Eng, 2(1): 28-32.
  • Sharma, S. (2012). Bioremediation: Features, Strategies and applications. Asian Journal of Pharmacy and Life Science, 2(2): 202-213.
  • Sinha, R.K., Bharambe, G. and Ryan, D. (2008). Converting wasteland into wonderland by earthworms-a low-cost nature’s technology for soil remediation: A case study of vermiremediation of PAHs contaminated soil. Environmentalist, 28: 466-475.
  • Sinha, R.K., Herat, S., Agarwal,S., Asadi, R. and Carretero, E. (2002). Vermiculture Technology for Environmental Management: Study of Action of Earthworms Elsinia foetida, Eudrilus euginae and Perionyx excavatus on Biodegradation of Some Community Wastes in India and Australia; The Environmentalist, U. K., 22(2): 261-268.
  • Sinha, R.K., Valani, D., Sinha, S., Singh, S. and Herat, S. (2009). Bioremediation of Contaminated Sites: A Low-Cost Nature’s Biotechnology for Environmental Clean Up By Versatile Microbes, Plants & Earthworms. In: Solid Waste Management and Environmental Remediation, Chapter 1, Ed: Timo Faerber and Johann Herzog, Nova Science Publishers, Inc.
  • Suciu, I., Cosma, C., Todică, M., Bolboacă, S.D. and Jäntschi, L. (2008). Analysis of Soil Heavy Metal Pollution and Pattern in Central Transylvania. International Journal of Moleculer Science, 9: 434-453.
  • Şener, Ş. (2010). Çevre için Jeoloji; Ağır Metallerin Çevresel Etkileri. SDUGEO, 1 (3): 33-35.
  • Truong, P. N. and Baker, D. (1998). Vetiver Grass System for Environmental Protection. Pacific Rim Vetiver Network, Technical Bulletin No. 1998/1. Royal Development Projects Protection, Office of the Royal Development Projects Board, Bangkok, Thailand.
  • Troung, P., Hedrick, J. and Searle, G. (2006). Vetiver Grass for Environmental Protection and Landscaping in Australia and around the World. The Fourth International Conference on Vetiver (ICV-4), Vetiver and People, Caracas, Venezuela.
  • Türkoğlu, B. (2006). Toprak Kirlenmesi ve Kirlenmiş Toprakların Islahı. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • USEPA. (2000). Introduction to Phytoremediation. EPA 600/R-99/107. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.
  • Usman, A.R., Kuzyakov, Y., Lorenz, K. and Stahr K. (2006). Remediation of a soil contaminated with heavy metals by immobilizing compounds. J. Plant Nutr. Soil Sci., 169: 205-212.
  • Vasudevan, P. and Sharma, S. (1997). Adoption of biofertilizers by farmers: some experiences. Proceedings at Int Conference on Application of Biotechnology in Biofertilizers and Biopesticides, DBEB, IIT Delhi.
  • Yılmaz, M. (2015). Türkiye’de kırsal nüfusun değişimi ve illere göre dağılımı (1980-2012). Doğu Coğrafya Dergisi, 20(33): 161-187.
  • Yurdakul, İ. (2015). Kirletilmiş Topraklarda ve Sularda Bitkisel İyileştirme Teknikleri ve Önemi. Türkiye Tarımsal Araştırmalar Dergisi, 2: 55-62.
Year 2016, , 1 - 11, 03.10.2016
https://doi.org/10.30785/mbud.282564

Abstract

References

  • Aksorn, E. and Chitsomboon, B. (2013). Bioaccumulation of heavy metal uptake by two different Vetiver grass (Vetiveria zizanioides and Vetiveria nemoralis) species. African Journal of Agricultural Research, 8(24): 3166-3171.
  • Antiochia, R., Campanella, L., Ghezzi, P. and Movassaghi, K. (2007). The use of vetiver for remediation of heavy metal soil contamination. Anal Bioanal Chem, 388: 947–956.
  • Arthur, E., Rice, P., Rice, P., Anderson, T., Baladi, S., Henderson, K. and Coats, J. (2005). Phytoremediation: An overview. Crit. Rev. Plant Sci., 24: 109-122.
  • Aybar, M., Bilgin, A. ve Sağlam, B. (2015). Fitoremediasyon Yöntemi İle Topraktaki Ağır Metallerin Giderimi. Doğal Afetler ve Çevre Dergisi, 1(1-2): 59-65.
  • Baş, A.L. ve Demet, Ö. (1992). Çevresel Toksikoloji Yönünden Bazı Ağır Metaller. Çevre Dergisi, 5: 42-46.
  • Bohlen, P.J., Parmalee, R. and Blair, J. (2004). Integrating the effects of earthworms on nutrient cycling across spatial and temporal scales. In C. Edwards, ed. Earthworm Ecology, 161-180.
  • Boopathy, R. (2000). Factors limiting bioremediation Technologies. Bioresource Technology, 74: 63-67.
  • Brown, G.G., Barois, I. and Lavelle, P. (2000). Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol., 36(3): 98-177.
  • Butt, K.R., Lowe, C.N., Frederickson, J., and Moffat, A.J. (2004). The development of sustainable earthworm populations at Calvert landfill site. UK. Land Degrad Dev., 15: 27-36.
  • Chen, H.M., Zheng, C.R., Tu, C. and Shen, Z.G. (2000). Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 41(1-2): 229-234.
  • Chowdhury, S., Bala, N.N. and Dhauria, P. (2012). Bioremediation-A Natural Way For Cleaner Environment. International Journal of Pharmaceutical, Chemical and Biological Sciences, 2(4): 600-611.
  • Cındık, Y. (2012). Trabzon İli Maçka İlçesi Esiroğlu Beldesinde Erozyan Açık Şev Alanlarda Vetiver grass (Vetiveria zizanioides (Linn.) Nash ) Bitkisinin Erozyon Önleme Olanaklarının Araştırılması. Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon.
  • Contreras-Ramos, S.M., Alvarez-Bernal, D. and Dendooven, L. (2006). Eisenia fetida Increased Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from Soil. Environmental Pollution, Elsevier Pub., 141: 396-401.
  • Cunnigham, S.D., Anderson, T.A., Schwab, P. and Hsu, F.C. (1996). Phytoremediation of soils contaminated with organic pollutants. Adv. Agronomy, 56: 55-114.
  • Daia, J., Becquerb, T., Rouillerc, J.H., Reversata, G., Bernhard-Reversata, F., Nahmania, J. and Lavellea, P. (2004). Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biology & Biochemistry, 36: 91-98.
  • Damodaran, D., Suresh, G. and Mohan B, R. (2011). Bioremediation of Soil by Removing Heavy Metals Using Saccharomyces Cerevisiae. 2nd International Conference on Environmental Science and Technology, Singapore.
  • Danh, L.T., Truong, P., Mammucari, R., Tran, T. and Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A Choice Plant For Phytoremediation of Heavy Metals And Organic Wastes. International Journal of Phytoremediation, 11: 664-691.
  • Edwards, C.A. (1995). Historical overview of vermicomposting. Biocycle, 36(9): 56-8.
  • Edwards, C.A. and Bohlen, C.J. (1996). Biology and Ecology of Earthworms. 3rd ed. London: Chapman & Hall.
  • EPA. (2001). Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup. USEPA (United States Environmental Protection Agency), Washington DC.
  • Etim, E.E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3): 120-136.
  • Evanko, C.R. and Dzombak, D.A. (1997). Remediation of Metals-Contaminated Soils and Groundwater. Technology Evaluation Report, E Series: TE-97-01, Ground-Water Remediation Technologies Analysis Center.
  • Frick, C.M., Farrell, R.E. and Germida, J.J. (1999). Assessment of Phytoremediation as an In-Situ Technique for Cleaning Oil-Contaminated Sites. Department of Soil Science University of Saskatchewan, Saskatoon, SK Canada.
  • Garbisu, C. and Alkorta, I. (2003). Basic concepts on heavy metal soil bioremediation. The European Journal of Mineral Processing and Environmental Protection, 3(1): 58-66.
  • Gerrard, M.A. (2008). The ability of Vetiver grass to act as a primary purifier of waste water; an answer to low cost sanitation and fresh water pollution. The Vetiver Network International, Texas.
  • Hamutoğlu, R., Dinçsoy, A.B., Cansaran-Duman, D. ve Aras, S. (2012). Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69(4): 235-53.
  • Hartenstein, R., Neuhauser, E.F. and Collier, J. (1980). Accumulation of heavy metals in the earthworm E. foetida. J Environ Qual, 9: 23-26.
  • Henry, J.R. (2000). An Overview of the Phytoremediation of Lead and Mercury. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, D.C.
  • Hickman, Z.A. and Reid, B.J. (2008). Earthworm assisted bioremediation of organic contaminants. Environ. Int. 34: 1072-1081.
  • Hidalgo, P. (1999). Earthworm castings increase germination rate and seedling development of cucumber. Mississippi Agricultural and Forestry Experiment Station, Research Report; 22(6).
  • Hopkin, S.P. (1989). Ecophysiology of Metals in Terrestrial Invertebrates. London, Elsevier.
  • İordache, M. and Borza, I. (2012). The bioremediation potential of earthworms (Oligochaeta: Lumbricidae) in a soil polluted with heavy metals. Journal of Food, Agriculture & Environment 10(2): 1183-1186.
  • İleri, R. (2000). Çevre Biyoteknolojisi. 1. Baskı. Adapazarı: Değişim Yayınları: 501-22.
  • Jian, C., Yang, Z., Su, Y., Han, F.X. and Monts, D.L. (2011). Phytoremediation Of Heavy Metal/Metalloid-Contaminated Soils. In Contaminated Soils: Environmental Impact, Disposal and Treatment., Ed: Robert V. Steinberg, Chapter 6, Nova Science Publishers, Inc., NY.
  • Kaviraj Sharma, S. (2003). Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresource Technology, 90: 169-73.
  • Khan, A.G. (2003). Vetiver grass as an Ideal Phytosymbiont for Glomalian Fungi for Ecological Restoration of Heavy Metal Contaminated Derelict Land. Proceedings of Third Internatioal Vetiver Conference (ICV-3), Guangzhou, China.
  • Kocaer, F.O. ve Başkaya, H.S, (2003). Metallerle Kirlenmiş Toprakların Temizlenmesinde Uygulanan Teknolojiler. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 8(1): 121-131.
  • Lai, H.Y. and Chen, Z.S. (2004). Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55: 421–430.
  • Lavelle, P., Charpentier, F., Villenave, C., Rossi, J.-P., Derouard, L., Pashanasi, B., Andr´e, J., Ponge, J.-F. and Bernier, N. (2004). Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades. In C. Edwards, ed. Earthworm Ecology. Boca Raton, FL: CRC Press LLC.
  • Malik, A. (2006). Environmental Microbiology: Bioremediation. National Science Digital Library, http://nsdl.niscair.res.in/jspui/bitstream/123456789/659/1/Bioremediation.pdf, Erişim Tarihi: 2.06.2016.
  • Malley, C., Nair, J. and Ho, G. (2006). Impact of heavy metals on enzymatic activity of substrate and on composting worms Eisenia fetida. Bioresource Technology 97: 1498–1502.
  • Marques, A.G.C., Rangel, A.O.S.S. and Castro, P.L. (2009). Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Critical Reviews in Environmental Science and Technology, 39(8): 622-654.
  • Montinaro, S., Concas, A., Pisu, M. And Cao, G.,(2012). Remediation of Heavy Metals Contaminated Soils by Ball Milling. Chemical Engineering Transactions, 28: 187-192.
  • Moosavi, S.G. and Seghatoleslami, M.J. (2013). Phytoremediation: A review. Adv. Agri. Biol. 1(1): 5-11.
  • Mudhiriza, T., Mapanda, F., Mvumi, B.M., and Wuta, M. (2015). Removal of nutrient and heavy metal loads from sewage effluent using vetiver grass, Chrysopogon zizanioides (L.) Roberty. Water SA, 41(4): 457-463.
  • Munroe, G. (2007). Manual of On-farm Vermicomposting and Vermiculture. Publication of Organic Agriculture, Centre of Canada, Nova Scotia.
  • NRC. (1993). Vetiver Grass: A Thin Green Line against Erosion, National Research Council Board on Science and Techonology for International Development. National Academy Press, Washington, D.C.
  • Okcu, M., Tozlu, E., Kumlay, A.M. ve Pehluvan, M. (2009). Ağır Metallerin Bitkiler Üzerine Etkileri. Alınteri, 17(B): 14-26.
  • Okrent, D. (1999). On intergenerational equity and its clash with intragenerational equity and on the need for policies to guide the regulation of disposal of wastes and other activities posing very long time risks. Risk Analysis, 19: 877-901.
  • Özay, C. ve Mammadov, R. (2013). Ağır Metaller ve Süs Bitkilerinin Fitoremediasyonda Kullanılabilirliği. BAÜ Fen Bil. Enst. Dergisi, 15(1): 67-76.
  • Parthasarathi, K., Balamurugan, M. and Ranganathan, L.S. (2008). Influence of vermicompost on the physico-chemical and biological properties in different types of soil along with yield and quality of the pulse crop–blackgram. Iran. J. Environ. Health. Sci. Eng., 2008, Vol. 5, No. 1, pp. 51-58.
  • Pashanasi, B., Lavelle, P., Alegre, J. and Charpentier, F. (1996). Effect of the endogeic earthworm, Pontoscolex corethrurus on soil chemical characteristics and plant growth in a low-input tropical agroecosystem. Soil Biology & Biochemistry, 28(6): 801-8.
  • Pilon-Smits, E.A.H. and Freeman, J.L. (2006). Environmental Cleanup using Plants: Biotechnological Advances and Ecological Considerations. Frontiers in Ecology and the Environment, 4: 203-210.
  • Riggle, D. and Holmes, H. (1994). New herizons for commercial vermiculture. Biocycle, 35(10): 58-62.
  • Roongtanakiat, N. (2009). Vetiver Phytoremediation for Heavy Metal Decontamination. PRVN Tech. Bull. No. 2009/1. ORDPB, Bangkok, Thailand.
  • Roongtanakiat, N. and Chairoj, P. (2001). Uptake Potential of Some Heavy Metals by Vetiver Grass. Kasetsart J. (Nat. Sci.), 35: 46-50.
  • Salt, D.E., Blaylock, M., Kumar, N., Dushenkov, V., Ensley, B.D., Chet, I. and Raskin, I. (1995). Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Bio/technology, 13: 468-474.
  • Shahmansouri, M.R., Pourmoghadas, H., Parvaresh, A.R. and Alidadi, H. (2005). Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida) in the Sewage Sludge Vermicomposting. Iranian J Env Health Sci Eng, 2(1): 28-32.
  • Sharma, S. (2012). Bioremediation: Features, Strategies and applications. Asian Journal of Pharmacy and Life Science, 2(2): 202-213.
  • Sinha, R.K., Bharambe, G. and Ryan, D. (2008). Converting wasteland into wonderland by earthworms-a low-cost nature’s technology for soil remediation: A case study of vermiremediation of PAHs contaminated soil. Environmentalist, 28: 466-475.
  • Sinha, R.K., Herat, S., Agarwal,S., Asadi, R. and Carretero, E. (2002). Vermiculture Technology for Environmental Management: Study of Action of Earthworms Elsinia foetida, Eudrilus euginae and Perionyx excavatus on Biodegradation of Some Community Wastes in India and Australia; The Environmentalist, U. K., 22(2): 261-268.
  • Sinha, R.K., Valani, D., Sinha, S., Singh, S. and Herat, S. (2009). Bioremediation of Contaminated Sites: A Low-Cost Nature’s Biotechnology for Environmental Clean Up By Versatile Microbes, Plants & Earthworms. In: Solid Waste Management and Environmental Remediation, Chapter 1, Ed: Timo Faerber and Johann Herzog, Nova Science Publishers, Inc.
  • Suciu, I., Cosma, C., Todică, M., Bolboacă, S.D. and Jäntschi, L. (2008). Analysis of Soil Heavy Metal Pollution and Pattern in Central Transylvania. International Journal of Moleculer Science, 9: 434-453.
  • Şener, Ş. (2010). Çevre için Jeoloji; Ağır Metallerin Çevresel Etkileri. SDUGEO, 1 (3): 33-35.
  • Truong, P. N. and Baker, D. (1998). Vetiver Grass System for Environmental Protection. Pacific Rim Vetiver Network, Technical Bulletin No. 1998/1. Royal Development Projects Protection, Office of the Royal Development Projects Board, Bangkok, Thailand.
  • Troung, P., Hedrick, J. and Searle, G. (2006). Vetiver Grass for Environmental Protection and Landscaping in Australia and around the World. The Fourth International Conference on Vetiver (ICV-4), Vetiver and People, Caracas, Venezuela.
  • Türkoğlu, B. (2006). Toprak Kirlenmesi ve Kirlenmiş Toprakların Islahı. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • USEPA. (2000). Introduction to Phytoremediation. EPA 600/R-99/107. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.
  • Usman, A.R., Kuzyakov, Y., Lorenz, K. and Stahr K. (2006). Remediation of a soil contaminated with heavy metals by immobilizing compounds. J. Plant Nutr. Soil Sci., 169: 205-212.
  • Vasudevan, P. and Sharma, S. (1997). Adoption of biofertilizers by farmers: some experiences. Proceedings at Int Conference on Application of Biotechnology in Biofertilizers and Biopesticides, DBEB, IIT Delhi.
  • Yılmaz, M. (2015). Türkiye’de kırsal nüfusun değişimi ve illere göre dağılımı (1980-2012). Doğu Coğrafya Dergisi, 20(33): 161-187.
  • Yurdakul, İ. (2015). Kirletilmiş Topraklarda ve Sularda Bitkisel İyileştirme Teknikleri ve Önemi. Türkiye Tarımsal Araştırmalar Dergisi, 2: 55-62.
There are 72 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Yasemin Cındık Akıncı

Turan Yüksek This is me

Öner Demirel This is me

Publication Date October 3, 2016
Submission Date December 21, 2016
Published in Issue Year 2016

Cite

APA Cındık Akıncı, Y., Yüksek, T., & Demirel, Ö. (2016). Ağır Metaller ile Kirlenmiş Toprağın İyileştirilmesinde Vetiver Grass (Vetiveria zizanioides (Linn.) Nash) ve Solucanların Kullanılması. Journal of Architectural Sciences and Applications, 1(1), 1-11. https://doi.org/10.30785/mbud.282564