Research Article
BibTex RIS Cite

A Method Proposal to Increase the Efficiency of Photovoltaic Panels Integrated to Buildings in Both Cold and Hot Seasons

Year 2021, , 227 - 236, 01.07.2021
https://doi.org/10.30785/mbud.909787

Abstract

One of the biggest parts in world energy consumption belongs to buildings. Therefore, building designers are increasingly concerned with energy problems and turning to renewable energy sources. The most widely used systems in renewable energy use in buildings are photovoltaic panels. Studies on the efficiency of photovoltaic panels and the parameters that affect them continue today. One of the factors affecting the energy production of photovoltaic panels is panel temperature. There are many studies in the literature that have tried different methods for cooling panels that are overheated under intense radiation. In this study, with the “Thermoelectric Effect” method, it is aimed to increase the panel efficiency by solving both the heating problem of the photovoltaic panels used in buildings during the summer seasons and the snowfall of the panels in the winter seasons. In the study, experiments were made on the pilot model, and the applicability of the method was shown with the calculations made in the light of the results.

Thanks

No assistance was received from any institution or organization in the study. The article complies with national and international research and publication ethics. Ethics committee permission was not required for the study.

References

  • Abd-Elhady, M. S., Serag, Z., Kandil, H. A. (2018). An Innovative Solution to the Overheating Problem of PV Panels. Energy Conversion and Management Volume 157, 1 February 2018, Pages 452-459.
  • Adeel Waqas, J. J. (2018). Effectiveness of Phase Change Material for Cooling of PV Panel for Hot Climate. Journal of Solar Energy Engineering Aug 2018, 140(4): 041006 (10 pages).
  • Ahiska, R., Ahiska, K. (2007). Flexible Two-Phase Thermoelectric CPU Cooler. Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (2), Pages 347-351.
  • Ahiska, R. (2007). New Method for Study Dynamic Exit Properties of Thermoelectric Modules. Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (4), Pages 709-716.
  • Alldatasheet Electronic Components Datasheet Search. Thermoelectric Cooler Performance Specifications. Access address (03 03 2021): https://www.alldatasheet.com/datasheet-pdf/pdf/227422/ETC2/TEC1-12706.html
  • Arifin, Z., Suyitno, S., Tjahjana, D. D. D. P., Juwana, W. E., Putra, M. R. A., Prabowo, A. R. (2020). The Effect of Heat Sink Properties on Solar Cell Cooling Systems. Applied Sciences, Published: 8 November 2020 Doi: 10.3390
  • Benghanem, M., Al-Mashraqi, A. A., Daffallah, K. O. (2016). Performance of Solar Cells Using Thermoelectric Module in Hot Sites. Renewable Energy, April 2016, Volume 89, Pages 51-59.
  • Bigot, D., Miranville, F., Fakra, A. H., Ingar, I., Guichard, S., Boyer, H. (2010). Thermal Performance of Photovoltaic Systems Integrated in Buildings. Researchgate Publication No: 221905612, October 2010, Doi: 10.5772/10347.
  • Carlos, Can Solar Panels Overheat? (2021). Access address (03 03 2021): https://ecotality.com/can-solar-panels-overheat/
  • Choi, J. S., Ko, J. S., Chung, D, H. (2010). Development of a Thermoelectric Cooling System for a High Efficiency BIPV Module. Journal of Power Electronics, 2010. Mar, 10 (2), p 187-193.
  • Du, B., Hub, E., Kolhec, M. (2012). Performance Analysis of Water Cooled Concentrated Photovoltaic (CPV) System. Renewable Sustainable Energy Reviews, Volume 16, December 2012, Pages 6732-6736.
  • Elminshawy, N. A. S., Mohamed, A. M. I., Morad, K., Elhenawy, Y., Alrobaian, A, A. (2019). Performance of PV Panel Coupled with Geothermal Air-Cooling System Subjected to Hot Climatic. Applied Thermal Engineering, Volume 148, 5 February 2019, Pages 1-9.
  • Elnozahy, A., Abdel Rahman, A. K., Ali, A. H. H., Abdel-Salam, M., Ookawara, S. (2015). Performance of a PV Module Integrated with Standalone Building in Hot Arid Areas as Enhanced by Surface Cooling and Cleaning. Energy and Buildings, Volume 88, 1 February 2015, Pages 100-109.
  • Emre, Y. (2021). Güneş Paneli (Solar Panel) Açısı Nasıl Hesaplanır. Access address (02 03 2021): https://www.aydinlatma.org/gunes-paneli-solar-panel-acisi-nasil-hesaplanir.html
  • Ezan, M. A., Yüksel, C., Alptekin, E., Yılancı, A. (2018). Importance of Natural Convection on Numerical Modelling of the Building Integrated PVP/PCM Systems. Solar Energy, Volume 159, 1 January 2018, Pages 616-627.
  • Gokmen, N., Hu, W., Hou, P., Chen, Z., Sera, D., Spataru, S. (2016). Investigation of Wind Speed Cooling Effect on PV Panels in Windy Locations. Renewable Energy, Volume 90, May 2016, Pages 283-290.
  • Fazri, Rizal, T. A., Amin, M., Hamdani, (2019). Performance Evaluation on PV Panels with Cooling Optimization Utilizing Phase Changing Materials. International Conference on Science, and Innovated Engineering, doi:10.1088/1757-899X/536/1/012082.
  • Fraunhofer Institute for Solar Energy Systems (2020). Fraunhofer ISE - Annual Report 2020/21. Access address (02 03 2021): https://www.ise.fraunhofer.de
  • Irwan, Y. M., Leow, W. Z., Irwanto, M., Fareq, M., Amelia, A. R., Gomesh, N., Safwati, I. (2015). Indoor Test Performance of PV Panel through Water Cooling Method. Science Direct, Energy Procedia Volume 79, November 2015, Pages 604-611.
  • Kim, J. H., Kim, H. R., Kim, J. T. (2015). Analysis of Photovoltaic Applications in Zero Energy Building. Sustainability 2015, 7, 8782-8800; doi:10.3390/su7078782.
  • Makki, A., Omer, S., Sabir, H. (2015). Advancements in Hybrid Photovoltaic Systems for Enhanced Solar Cells Performance. Renewable and Sustainable Energy Reviews, Volume 41, January 2015, Pages 658-684.
  • Open University Courses. Basic Physical Principles of Photovoltaics. Access address (03 02 2021): https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=73760&section=2.
  • Raudensky, M., Astrouski, I., Reppich, M., Schmidt, M. (2015). Solar Panel Cooling System with Hollow Fibres. Third Southern African Solar Energy Conference, Kruger National Park, South Africa, 11 –13 May 2015.
  • Sh-Eldin, M., Sopian, K., Alghoul, F. O., Abouhnik, A., Muftah, M. (2013). Solar Chimney Model Parameters to Enhance Cooling PV Panel Performance. Modern Applied Science; Vol. 7, No. 2.
  • Taqwa, A., Dewi, T., Kusumanto, R. D., Sitompul, C. R., (2019). Automatic Cooling of a PV System to Overcome Overheated PV Surface in Palembang. Journal of Physics: Conference Series doi:10.1088/1742-6596/1500/1/012013.
  • TSKB Rapor. Enerji Görünümü. (2020). Access address (03 02 2021): https://www.tskb.com.tr/i/assets/document/pdf/enerji-sektor-gorunumu-2020.pdf.
  • Zhu, L., Raman, A., Wang, K. X., Anoma, M. A., Fan, S. (2014). Radiative Cooling of Solar Cells. Vol. 1, No. 1 / July 2014 / Optica.

Binalarda Kullanılan Fotovoltaik Panellerin Soğuk ve Sıcak Mevsimde Verimini Arttıracak Bir Yöntem Önerisi

Year 2021, , 227 - 236, 01.07.2021
https://doi.org/10.30785/mbud.909787

Abstract

Dünya genelinde enerji tüketimindeki en büyük paylardan biri binalara aittir. Dolayısıyla bina tasarımcıları giderek daha fazla enerji sorunuyla ilgilenmeye ve yenilenebilir enerji kaynaklarına yönelmeye başlamışlardır. Binalarda yenilenebilir enerji kullanımında en yaygın olarak kullanılan sistemler fotovoltaik panel sistemleridir. Fotovoltaik panellerin verimliliğini etkileyen parametrelerle ilgili çalışmalar günümüzde de devam etmektedir. Fotovoltaik panellerin enerji üretimini etkileyen faktörlerden bir tanesi panel sıcaklığıdır. Literatürde, yoğun radyasyon altında aşırı ısınan panellerin soğutulmasıyla ilgili farklı yöntemlerin denendiği çok sayıda çalışma bulunmaktadır. Bu çalışmada, “Termoelektrik Etki” yöntemiyle, binalarda kullanılan fotovoltaik panellerde yaz mevsimlerinde görülen ısınma sorununa ve kış mevsimlerinde panellerin kar altında kalmasına çözüm getirilerek panel verimliliğinin arttırılması amaçlanmıştır. Çalışmada pilot model üzerinde deneyler yapılmış, elde edilen sonuçlar ışığında yapılan hesaplamalarla yöntemin uygulanabilirliği gösterilmiştir.

References

  • Abd-Elhady, M. S., Serag, Z., Kandil, H. A. (2018). An Innovative Solution to the Overheating Problem of PV Panels. Energy Conversion and Management Volume 157, 1 February 2018, Pages 452-459.
  • Adeel Waqas, J. J. (2018). Effectiveness of Phase Change Material for Cooling of PV Panel for Hot Climate. Journal of Solar Energy Engineering Aug 2018, 140(4): 041006 (10 pages).
  • Ahiska, R., Ahiska, K. (2007). Flexible Two-Phase Thermoelectric CPU Cooler. Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (2), Pages 347-351.
  • Ahiska, R. (2007). New Method for Study Dynamic Exit Properties of Thermoelectric Modules. Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (4), Pages 709-716.
  • Alldatasheet Electronic Components Datasheet Search. Thermoelectric Cooler Performance Specifications. Access address (03 03 2021): https://www.alldatasheet.com/datasheet-pdf/pdf/227422/ETC2/TEC1-12706.html
  • Arifin, Z., Suyitno, S., Tjahjana, D. D. D. P., Juwana, W. E., Putra, M. R. A., Prabowo, A. R. (2020). The Effect of Heat Sink Properties on Solar Cell Cooling Systems. Applied Sciences, Published: 8 November 2020 Doi: 10.3390
  • Benghanem, M., Al-Mashraqi, A. A., Daffallah, K. O. (2016). Performance of Solar Cells Using Thermoelectric Module in Hot Sites. Renewable Energy, April 2016, Volume 89, Pages 51-59.
  • Bigot, D., Miranville, F., Fakra, A. H., Ingar, I., Guichard, S., Boyer, H. (2010). Thermal Performance of Photovoltaic Systems Integrated in Buildings. Researchgate Publication No: 221905612, October 2010, Doi: 10.5772/10347.
  • Carlos, Can Solar Panels Overheat? (2021). Access address (03 03 2021): https://ecotality.com/can-solar-panels-overheat/
  • Choi, J. S., Ko, J. S., Chung, D, H. (2010). Development of a Thermoelectric Cooling System for a High Efficiency BIPV Module. Journal of Power Electronics, 2010. Mar, 10 (2), p 187-193.
  • Du, B., Hub, E., Kolhec, M. (2012). Performance Analysis of Water Cooled Concentrated Photovoltaic (CPV) System. Renewable Sustainable Energy Reviews, Volume 16, December 2012, Pages 6732-6736.
  • Elminshawy, N. A. S., Mohamed, A. M. I., Morad, K., Elhenawy, Y., Alrobaian, A, A. (2019). Performance of PV Panel Coupled with Geothermal Air-Cooling System Subjected to Hot Climatic. Applied Thermal Engineering, Volume 148, 5 February 2019, Pages 1-9.
  • Elnozahy, A., Abdel Rahman, A. K., Ali, A. H. H., Abdel-Salam, M., Ookawara, S. (2015). Performance of a PV Module Integrated with Standalone Building in Hot Arid Areas as Enhanced by Surface Cooling and Cleaning. Energy and Buildings, Volume 88, 1 February 2015, Pages 100-109.
  • Emre, Y. (2021). Güneş Paneli (Solar Panel) Açısı Nasıl Hesaplanır. Access address (02 03 2021): https://www.aydinlatma.org/gunes-paneli-solar-panel-acisi-nasil-hesaplanir.html
  • Ezan, M. A., Yüksel, C., Alptekin, E., Yılancı, A. (2018). Importance of Natural Convection on Numerical Modelling of the Building Integrated PVP/PCM Systems. Solar Energy, Volume 159, 1 January 2018, Pages 616-627.
  • Gokmen, N., Hu, W., Hou, P., Chen, Z., Sera, D., Spataru, S. (2016). Investigation of Wind Speed Cooling Effect on PV Panels in Windy Locations. Renewable Energy, Volume 90, May 2016, Pages 283-290.
  • Fazri, Rizal, T. A., Amin, M., Hamdani, (2019). Performance Evaluation on PV Panels with Cooling Optimization Utilizing Phase Changing Materials. International Conference on Science, and Innovated Engineering, doi:10.1088/1757-899X/536/1/012082.
  • Fraunhofer Institute for Solar Energy Systems (2020). Fraunhofer ISE - Annual Report 2020/21. Access address (02 03 2021): https://www.ise.fraunhofer.de
  • Irwan, Y. M., Leow, W. Z., Irwanto, M., Fareq, M., Amelia, A. R., Gomesh, N., Safwati, I. (2015). Indoor Test Performance of PV Panel through Water Cooling Method. Science Direct, Energy Procedia Volume 79, November 2015, Pages 604-611.
  • Kim, J. H., Kim, H. R., Kim, J. T. (2015). Analysis of Photovoltaic Applications in Zero Energy Building. Sustainability 2015, 7, 8782-8800; doi:10.3390/su7078782.
  • Makki, A., Omer, S., Sabir, H. (2015). Advancements in Hybrid Photovoltaic Systems for Enhanced Solar Cells Performance. Renewable and Sustainable Energy Reviews, Volume 41, January 2015, Pages 658-684.
  • Open University Courses. Basic Physical Principles of Photovoltaics. Access address (03 02 2021): https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=73760&section=2.
  • Raudensky, M., Astrouski, I., Reppich, M., Schmidt, M. (2015). Solar Panel Cooling System with Hollow Fibres. Third Southern African Solar Energy Conference, Kruger National Park, South Africa, 11 –13 May 2015.
  • Sh-Eldin, M., Sopian, K., Alghoul, F. O., Abouhnik, A., Muftah, M. (2013). Solar Chimney Model Parameters to Enhance Cooling PV Panel Performance. Modern Applied Science; Vol. 7, No. 2.
  • Taqwa, A., Dewi, T., Kusumanto, R. D., Sitompul, C. R., (2019). Automatic Cooling of a PV System to Overcome Overheated PV Surface in Palembang. Journal of Physics: Conference Series doi:10.1088/1742-6596/1500/1/012013.
  • TSKB Rapor. Enerji Görünümü. (2020). Access address (03 02 2021): https://www.tskb.com.tr/i/assets/document/pdf/enerji-sektor-gorunumu-2020.pdf.
  • Zhu, L., Raman, A., Wang, K. X., Anoma, M. A., Fan, S. (2014). Radiative Cooling of Solar Cells. Vol. 1, No. 1 / July 2014 / Optica.
There are 27 citations in total.

Details

Primary Language English
Subjects Architecture
Journal Section Research Articles
Authors

Derin Algül 0000-0002-3445-7274

Cüneyt Diri 0000-0001-8122-9568

Publication Date July 1, 2021
Submission Date April 8, 2021
Published in Issue Year 2021

Cite

APA Algül, D., & Diri, C. (2021). A Method Proposal to Increase the Efficiency of Photovoltaic Panels Integrated to Buildings in Both Cold and Hot Seasons. Journal of Architectural Sciences and Applications, 6(1), 227-236. https://doi.org/10.30785/mbud.909787