Research Article
BibTex RIS Cite

Building from Scrap: Computational Design and Robotic Fabrication Strategies for Spatial Reciprocal Structures from Plate-shaped Wooden Production Waste

Year 2023, Volume: 8 Issue: 1 - JASA_2023, 8(1), 38 - 53, 31.07.2023
https://doi.org/10.30785/mbud.1244395

Abstract

This paper describes an innovative methodology allowing upcycling production waste into legitimate construction material for spatial structures, with minimal change to elements` shape. The system is based on interlocking joints between the boards. The plates are organized around nodes, creating a three-dimensional reciprocal system guaranteeing the stability of the entire structure, without any fasteners. We use an inversed, data-driven design process, in which unique components are defining the form of the structure. The design-to-production workflow consists of measuring and labeling of the elements, creating a data file, data-driven generation of the structure with a custom form-finding algorithm, structural optimization of the form, robotic processing of the scraps and manual assembly. The proposed methodology was tested in public spaces as a temporary pavilion and three wood-clay composite sitting elements, thus practically demonstrating the feasibility of our approach.

Thanks

The research was conducted at the BFH School of Architecture, Wood and Civil Engineering. The case study `Structure from scraps` was executed in a research-oriented teaching project. The authors would like to sincerely thank all the collaborators of the project from outside of the institution: Thomas Wehrle from ERNE AG Holzbau for material provision and collaboration on the demonstrator, Tecslot for providing software for the AR assembly test, TouchWood and ArchitekturWoche Basel for invitation the project to the exhibitions. Within BFH: Lukas Furrer for conducting structural analysis, Katharina Lindenberg for support at design, Bruno Salzmann and Stanislas Zimmermann for helping on the assembly of bench objects, and the bachelor students who took part in the workshops: Matthias Spalinger, Gian Salzgeber, Jonas Hausammann, Tino Attenhofer, Sandro Gisler, Gérôme Koehn, Samuel Beer, Michael Schori, Mathias Rüede, Samuel Pulfer, Josua Bieler, Leila Dolder and Nicolas Schönenberger. The authors wish to thank Alexander Arregui Leszcz at ARCHIBATCH (https://archibatch.com/) for providing several photographs for this publication. His support is greatly appreciated. We thank Christopher Holmes for checking our manuscript prior to the submission and providing valuable feedback on the text. This article was presented at the ATI2022 'De-Constructing and Re-Using Architecture' Symposium and has been published only as an abstract. The article complies with national and international research and publication ethics. Ethics Committee approval was not required for the study.

References

  • Alvarez, M., Wagner, H.J., Groenewolt, A., Krieg, O.D, Kyjanek, O., Sonntag, Scheder-Bieschin, L., Bechert, S., Menges, A., and Knippers, J. (2019). The Buga Wood Pavilion Integrative Interdisciplinary Advancements of Digital Timber Architecture. Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA. Austin, Texas, 490–500.
  • Araullo, R. & Haeusler, M.H. (2017). Asymmetrical double-notch connection system in planar reciprocal frame structures. In: P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (Eds.) Protocols, Flows and Glitches, Proceedings of the 22nd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) Hong Kong, 539-549.
  • Augustynowicz, E., Smigielska, M., Nikles, D., Wehrle, T. & Wagner, H. (2021). Parametric design and multirobotic fabrication of wood facades. ACADIA 2021: Realignments. Toward Critical Computation. Proceedings of the 41st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA).
  • Baverel, O. & Pugnale, A. (2013). Reciprocal systems based on planar elements. Proceedings of the ICSA 2013: Structures and Architecture. Beyond the limits of man. Guimaraes.
  • Bianconi, F. & Filippucci, M. (2019). WOOD, CAD AND AI: Digital Modelling as Place of Convergence of Natural and Artificial Intelligent to Design Timber Architecture. In: F. Bianconi, M. Filippucci (Eds.) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer.
  • Bolden, J., Abu-Lebdeh, T., & Fini, E. (2013). Utilization of recycled and waste materials in various construction applications. American Journal of Environmental Science, 9(1), 14-24.
  • Brown, N. & Mueller, C. (2017). Designing with data: moving beyond the design space catalog. Acadia 2017 Discipline+Distruption. MIT Press, Cambridge, pp 154–163.
  • Circulating Matters. (2022). Retrieved from https://cca.cornell.edu/portfolio/felix-heisel-2022-cornell-biennial/
  • Daling, L. M. & Schlittmeier, S. J. (2022). Effects of Augmented Reality-, Virtual Reality-, and Mixed Reality–Based Training on Objective Performance Measures and Subjective Evaluations in Manual Assembly Tasks: A Scoping Review. Human Factors, 00187208221105135.
  • Deutsch, R. (2015). Data-Driven Design and Construction: 25 Strategies for Capturing, Analyzing and Applying Building Data. Hoboken: Wiley, 2015. Print.
  • Dey, D., Srinivas, D., Panda, B., Suraneni, P. & Sitharam, T. G. (2022). Use of industrial waste materials for 3D printing of sustainable concrete: A review. Journal of Cleaner Production, 130749.
  • Durmisevic, E., Guerriero, A., Boje, C., Domange, B. & Bosch, G. (2021). Development of a conceptual digital deconstruction platform with integrated Reversible BIM to aid decision making and facilitate a circular economy. In: CIB W78 2021, 11-15 October 2021, Luxembourg. pp. 902- 911.
  • Figliola, A. & Battisti, A. (2019). Performative Architecture and Wooden Structures: Overview on the Main Research Paths in Europe: Innovative Techniques of Representation in Architectural Design. In: F. Bianconi, M. Filippucci (Eds.) Lecture Notes in Civil Engineering, vol 24. Springer. (pp.937-969)
  • Hughes, M. (2019). Cascading Wood, Material cycles, and sustainability. In M. Hudert & S. Pfeiffer (Eds.), Rethinking Wood. Future Dimensions of Timber Assembly (1st ed., pp.31-46). Basel: Birkhäuser.
  • Kromoser, B., Reichenbach, S., Hellmayr, R., Myna, R. & Wimmer, R. (2022). Circular economy in wood construction – Additive manufacturing of fully recyclable walls made from renewables: Proof of concept and preliminary data. In Construction and Building Materials.
  • Kolarevic, B. (2009). Towards integrative design. International Journal of Architectural Computing, vol. 7 - no. 3, 335-344.
  • Kuma, K., Imperadori, M., Clozza, M., Hirano, T., Vanossi, A. & Brunone, F. (2019). KODAMA: A Polyhedron Sculpture in the Forest at Arte Sella. In: F. Bianconi, M. Filippucci (Eds.) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer.
  • Larsen, O. (2014). Reciprocal frame (RF) Str exploratory. Nexus Network Journal. 16. 10.1007/s00004-014-0181-0.
  • Malé-Alemany, M., Schoen, T., Galli, M., Bors, V., Kozhevnikova, A. & Van Dijk, L. (2022). Once my front door – now my coffee table. Advanced computational design and robotic production with waste wood. 1-5. Paper presented at AMS Institute Conference ‘Reinventing the City’, Amsterdam, Netherlands.
  • McKinsey. (2016). Global Media Report 2016. Global Media and Entertainment Practice, December 2016. Retrieved from https://www.mckinsey.com/industries/technology-media-and-telecommunications/our- insights/global-media-report-2016.
  • Mollica, Z. & Self, M. (2016). Tree Fork Truss: Geometric Strategies for Exploiting Inherent Material Form. In Advances in Architectural Geometry 2016, no. September.
  • Monier, V., Bignon, J.C. & Duchanois, G. (2013). Use of irregular wood components to design non-standard structures. Adv. Mater. Res. 2013; 671–674: 2337–2343.
  • Moussavi, S., M., Svatoš-Ražnjević, H., Körner, A., Tahouni, Y., Menges, A. & Knippers, J. (2022). Design based on availability: Generative design and robotic fabrication workflow for non-standardized sheet metal with variable properties. In International Journal of Space Structures.
  • Nolte, T., Witt, A., Degen, M., Tucker, J., Glen, C., Kuang, C., Hamm, D. (2016): «Mine the Scrap», Art Pproject. Retreived from: https://certainmeasures.com/MINE-THE-SCRAP
  • Özgünler, M. (2017). Kırsal sürdürülebilirlik bağlamında geleneksel köy evlerinde kullanılan toprak esaslı yapı malzemelerinin incelenmesi. Journal of Architectural Sciences and Applications, 2 (2) , 33-41 . DOI: 10.30785/mbud.353949
  • Patti, A., Acierno, S., Cicala, G., Zarrelli, M. & Acierno, D. (2022). Recovery of Waste Material from Biobags: 3D Printing Process and Thermo-Mechanical Characteristics in Comparison to Virgin and Composite Matrices. Polymers, 14(10), 1943.
  • Pehlivan, G. F. (2018). Edirne Rüstempaşa Kervansarayı’nın yeni işlevinin değerlendirilmesi. Journal of Architectural Sciences and Applications, 3 (2) , 1-20 . DOI: 10.30785/mbud.370896
  • Plate Pavilion. (2014). Kontik, T., ETH. Retrieved from https://parametrichouse.com/plate-pavilion/
  • Pugnale, A., Parigi, D., Kirkegaard, P. & Sassone, M. (2011). The Principle of Structural Reciprocity, Full Papers: Taller, Longer, Lighter.
  • Purchase, C. K., Al Zulayq, D. M., O’Brien, B. T., Kowalewski, M. J., Berenjian, A., Tarighaleslami, A. H. & Seifan, M. (2022). Circular economy of construction and demolition waste: A literature review on lessons, challenges, and benefits. Materials, 15(1), 76.
  • Risse, M. & Richter, K. (2018). CaReWood – Cascading Recovered Wood. Teilvorhaben: Ökologische und ökonomische Berwetung der kaskadischen Holznutzung, Technische Universität München, Lehrstuhl für Holzwissenschaft, 2018.
  • Rüter, S. & Diederichs, S.K. (2012): Ökobilanz-Basisdaten für Bauprodukte aus Holz. Hamburg: Johann Heinrich von Thünen-Institut.
  • Thönnissen, U. (2014). A form-finding instrument for reciprocal structures. Nexus Netw J 16, 89–107.
  • Wei, W., Yuan, J. &Liu, A. (2020). Manufacturing data-driven process adaptive design method. In Science Direct, Procedia CIRP 91 (2020) 728-734.
  • WoodCircus. (2019). Retrieved from https://woodcircus.eu/index.php/about/s

Atık kullanarak inşa etmek: Levha şeklindeki ahşap üretim atıklarından üretilmiş uzaysal mütekabil strüktürler için hesaplamalı tasarım ve robotik imalat stratejileri

Year 2023, Volume: 8 Issue: 1 - JASA_2023, 8(1), 38 - 53, 31.07.2023
https://doi.org/10.30785/mbud.1244395

Abstract

Bu makale, üretim atıklarının, minimum biçim değişikliği ile mekansal yapılar için meşru inşaat malzemesine dönüştürülmesine izin veren yenilikçi bir metodolojiyi açıklamaktadır. Sistem, levhalar arasındaki geçme bağlantılara dayanmaktadır. Plakalar, herhangi bir bağlantı elemanı olmadan tüm yapının stabilitesini garanti eden üç boyutlu bir karşılıklı sistem oluşturarak düğümler etrafında düzenlenmiştir. Benzersiz bileşenlerin yapının biçimini tanımladığı tersine çevrilmiş, veriye dayalı bir tasarım süreci kullanılmıştır. Tasarımdan üretime iş akışı, öğelerin ölçülmesi ve etiketlenmesi, bir veri dosyası oluşturulması, özel bir form bulma algoritmasıyla yapının veriye dayalı olarak oluşturulması, formun yapısal optimizasyonu, hurdaların robotik işlenmesi ve manuel montajdan oluşmaktadır. Önerilen metodoloji, kamusal alanlarda geçici pavyon ve üç ahşap-kil kompozit oturma elemanı olarak test edilmiştir, böylece yaklaşımımızın uygulanabilirliği pratik olarak gösterilmiştir.

References

  • Alvarez, M., Wagner, H.J., Groenewolt, A., Krieg, O.D, Kyjanek, O., Sonntag, Scheder-Bieschin, L., Bechert, S., Menges, A., and Knippers, J. (2019). The Buga Wood Pavilion Integrative Interdisciplinary Advancements of Digital Timber Architecture. Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA. Austin, Texas, 490–500.
  • Araullo, R. & Haeusler, M.H. (2017). Asymmetrical double-notch connection system in planar reciprocal frame structures. In: P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (Eds.) Protocols, Flows and Glitches, Proceedings of the 22nd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) Hong Kong, 539-549.
  • Augustynowicz, E., Smigielska, M., Nikles, D., Wehrle, T. & Wagner, H. (2021). Parametric design and multirobotic fabrication of wood facades. ACADIA 2021: Realignments. Toward Critical Computation. Proceedings of the 41st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA).
  • Baverel, O. & Pugnale, A. (2013). Reciprocal systems based on planar elements. Proceedings of the ICSA 2013: Structures and Architecture. Beyond the limits of man. Guimaraes.
  • Bianconi, F. & Filippucci, M. (2019). WOOD, CAD AND AI: Digital Modelling as Place of Convergence of Natural and Artificial Intelligent to Design Timber Architecture. In: F. Bianconi, M. Filippucci (Eds.) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer.
  • Bolden, J., Abu-Lebdeh, T., & Fini, E. (2013). Utilization of recycled and waste materials in various construction applications. American Journal of Environmental Science, 9(1), 14-24.
  • Brown, N. & Mueller, C. (2017). Designing with data: moving beyond the design space catalog. Acadia 2017 Discipline+Distruption. MIT Press, Cambridge, pp 154–163.
  • Circulating Matters. (2022). Retrieved from https://cca.cornell.edu/portfolio/felix-heisel-2022-cornell-biennial/
  • Daling, L. M. & Schlittmeier, S. J. (2022). Effects of Augmented Reality-, Virtual Reality-, and Mixed Reality–Based Training on Objective Performance Measures and Subjective Evaluations in Manual Assembly Tasks: A Scoping Review. Human Factors, 00187208221105135.
  • Deutsch, R. (2015). Data-Driven Design and Construction: 25 Strategies for Capturing, Analyzing and Applying Building Data. Hoboken: Wiley, 2015. Print.
  • Dey, D., Srinivas, D., Panda, B., Suraneni, P. & Sitharam, T. G. (2022). Use of industrial waste materials for 3D printing of sustainable concrete: A review. Journal of Cleaner Production, 130749.
  • Durmisevic, E., Guerriero, A., Boje, C., Domange, B. & Bosch, G. (2021). Development of a conceptual digital deconstruction platform with integrated Reversible BIM to aid decision making and facilitate a circular economy. In: CIB W78 2021, 11-15 October 2021, Luxembourg. pp. 902- 911.
  • Figliola, A. & Battisti, A. (2019). Performative Architecture and Wooden Structures: Overview on the Main Research Paths in Europe: Innovative Techniques of Representation in Architectural Design. In: F. Bianconi, M. Filippucci (Eds.) Lecture Notes in Civil Engineering, vol 24. Springer. (pp.937-969)
  • Hughes, M. (2019). Cascading Wood, Material cycles, and sustainability. In M. Hudert & S. Pfeiffer (Eds.), Rethinking Wood. Future Dimensions of Timber Assembly (1st ed., pp.31-46). Basel: Birkhäuser.
  • Kromoser, B., Reichenbach, S., Hellmayr, R., Myna, R. & Wimmer, R. (2022). Circular economy in wood construction – Additive manufacturing of fully recyclable walls made from renewables: Proof of concept and preliminary data. In Construction and Building Materials.
  • Kolarevic, B. (2009). Towards integrative design. International Journal of Architectural Computing, vol. 7 - no. 3, 335-344.
  • Kuma, K., Imperadori, M., Clozza, M., Hirano, T., Vanossi, A. & Brunone, F. (2019). KODAMA: A Polyhedron Sculpture in the Forest at Arte Sella. In: F. Bianconi, M. Filippucci (Eds.) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer.
  • Larsen, O. (2014). Reciprocal frame (RF) Str exploratory. Nexus Network Journal. 16. 10.1007/s00004-014-0181-0.
  • Malé-Alemany, M., Schoen, T., Galli, M., Bors, V., Kozhevnikova, A. & Van Dijk, L. (2022). Once my front door – now my coffee table. Advanced computational design and robotic production with waste wood. 1-5. Paper presented at AMS Institute Conference ‘Reinventing the City’, Amsterdam, Netherlands.
  • McKinsey. (2016). Global Media Report 2016. Global Media and Entertainment Practice, December 2016. Retrieved from https://www.mckinsey.com/industries/technology-media-and-telecommunications/our- insights/global-media-report-2016.
  • Mollica, Z. & Self, M. (2016). Tree Fork Truss: Geometric Strategies for Exploiting Inherent Material Form. In Advances in Architectural Geometry 2016, no. September.
  • Monier, V., Bignon, J.C. & Duchanois, G. (2013). Use of irregular wood components to design non-standard structures. Adv. Mater. Res. 2013; 671–674: 2337–2343.
  • Moussavi, S., M., Svatoš-Ražnjević, H., Körner, A., Tahouni, Y., Menges, A. & Knippers, J. (2022). Design based on availability: Generative design and robotic fabrication workflow for non-standardized sheet metal with variable properties. In International Journal of Space Structures.
  • Nolte, T., Witt, A., Degen, M., Tucker, J., Glen, C., Kuang, C., Hamm, D. (2016): «Mine the Scrap», Art Pproject. Retreived from: https://certainmeasures.com/MINE-THE-SCRAP
  • Özgünler, M. (2017). Kırsal sürdürülebilirlik bağlamında geleneksel köy evlerinde kullanılan toprak esaslı yapı malzemelerinin incelenmesi. Journal of Architectural Sciences and Applications, 2 (2) , 33-41 . DOI: 10.30785/mbud.353949
  • Patti, A., Acierno, S., Cicala, G., Zarrelli, M. & Acierno, D. (2022). Recovery of Waste Material from Biobags: 3D Printing Process and Thermo-Mechanical Characteristics in Comparison to Virgin and Composite Matrices. Polymers, 14(10), 1943.
  • Pehlivan, G. F. (2018). Edirne Rüstempaşa Kervansarayı’nın yeni işlevinin değerlendirilmesi. Journal of Architectural Sciences and Applications, 3 (2) , 1-20 . DOI: 10.30785/mbud.370896
  • Plate Pavilion. (2014). Kontik, T., ETH. Retrieved from https://parametrichouse.com/plate-pavilion/
  • Pugnale, A., Parigi, D., Kirkegaard, P. & Sassone, M. (2011). The Principle of Structural Reciprocity, Full Papers: Taller, Longer, Lighter.
  • Purchase, C. K., Al Zulayq, D. M., O’Brien, B. T., Kowalewski, M. J., Berenjian, A., Tarighaleslami, A. H. & Seifan, M. (2022). Circular economy of construction and demolition waste: A literature review on lessons, challenges, and benefits. Materials, 15(1), 76.
  • Risse, M. & Richter, K. (2018). CaReWood – Cascading Recovered Wood. Teilvorhaben: Ökologische und ökonomische Berwetung der kaskadischen Holznutzung, Technische Universität München, Lehrstuhl für Holzwissenschaft, 2018.
  • Rüter, S. & Diederichs, S.K. (2012): Ökobilanz-Basisdaten für Bauprodukte aus Holz. Hamburg: Johann Heinrich von Thünen-Institut.
  • Thönnissen, U. (2014). A form-finding instrument for reciprocal structures. Nexus Netw J 16, 89–107.
  • Wei, W., Yuan, J. &Liu, A. (2020). Manufacturing data-driven process adaptive design method. In Science Direct, Procedia CIRP 91 (2020) 728-734.
  • WoodCircus. (2019). Retrieved from https://woodcircus.eu/index.php/about/s
There are 35 citations in total.

Details

Primary Language English
Subjects Architecture
Journal Section Research Articles
Authors

Edyta Augustynowicz 0000-0002-9951-011X

Nikita Aigner 0000-0002-1877-371X

Publication Date July 31, 2023
Submission Date January 30, 2023
Published in Issue Year 2023 Volume: 8 Issue: 1 - JASA_2023, 8(1)

Cite

APA Augustynowicz, E., & Aigner, N. (2023). Building from Scrap: Computational Design and Robotic Fabrication Strategies for Spatial Reciprocal Structures from Plate-shaped Wooden Production Waste. Journal of Architectural Sciences and Applications, 8(1), 38-53. https://doi.org/10.30785/mbud.1244395