Research Article
BibTex RIS Cite

Kinetik Çatı Strüktürleri için Eleştirel bir İnceleme ve Yeni Sınıflandırma Önerisi

Year 2023, Volume: 8 Issue: 2, 587 - 608, 16.12.2023
https://doi.org/10.30785/mbud.1300141

Abstract

Kinetik strüktürler, çevresel faktörleri ve kullanıcı ihtiyaçlarını karşılama yetenekleri nedeniyle, son yıllarda hem mimarlık, hem de inşaat mühendisliği alanlarında oldukça popüler hale gelmiştir. Kinetik çatılar ise, kinetik strüktürlerin bir alt kolu olarak, değişken geometriye sahip olabilmeleri, büyüyüp küçülebilmeleri ve açılıp kapanabilmeleri sebebiyle önemli bir yer tutmaktadır. Literatürde, kinetik çatıları malzeme, mekanizma ve geometrilerine göre ayıran çeşitli sınıflandırmalar bulunmaktadır. Ancak bu sınıflandırmaların çoğunda kinetik çatılar, daha üst bir çerçeve olan kinetik strüktürlerin bir alt kolu olarak ele alınmıştır. Bu çalışmada, öncelikle var olan kinetik çatı sınıflandırmaları eleştirel bir şekilde incelenerek, avantajları ve eksikleri ortaya konmuştur. Ardından, kinetik çatı strüktürleri için literatürde olmayan, yeni ve ayrıntılı bir sınıflandırma sistemi önerilmiştir. Daha sonra, önerilen sınıflandırmanın avantajları ve dezavantajları ortaya konmuştur. Bu çalışma, kinetik çatılar için daha kapsamlı ve özelleştirilmiş bir sınıflandırma sistemi sunarak, literatüre katkıda bulunmaktadır.

Project Number

BAP 101

References

  • Adrover, E. R. (2015). Deployable Structures. London: Laurence King Publishing.
  • Akgün, Y., Maden, F. & Korkmaz, K. (2013). Design of Adaptive Structures by Kinematic Synthesis. Proceedings of ICSA 2013 – Structures and Architecture: Concepts, Applications and Challenges. Guimaraes: CRC Press. pp. 976-982. Access Address: https://www.taylorfrancis.com/chapters/edit/10.1201/b15267-139/design-adaptive- structures-kinematic-synthesis-mechanisms-akg%C3%BCn-maden-korkmaz.
  • Asefi, M. (2010). Transformable and Kinetic Architectural Structures: Design, Evaluation and Application to Intelligent Architecture. Riga: VDM Verlag Dr. Müller Press. 9783639250626.
  • Del Grosso, A. E. & Basso, P. (2013). Deployable structures. In Proceedings of Advances in Science and Technology: 83, pp. 122-131. Trans Tech Publications Ltd.
  • Escrig, F. (1996). General survey of deployability in architecture. In Proceedings of MARAS’96: 2nd International Conference on Mobile and Rapidly Assembled Structures. Seville: Computational Mechanics Publications, pp. 3-22.
  • Fouad, S. M. A. E. (2012). Design methodology: Kinetic architecture. (Master Thesis), Alexandria University, Egypt. Accessed from database Access Address (10.05.2023): https://www.academia.edu/4485555/Design_Methodology_Kinetic_Architecture
  • Fournier, F., Houtman, R., & Reitsma, F. (2008). www.tensinet .com. July.
  • Gantes, C. J. (1991). A Design Methodology for Deployable Structures. (Ph.D. Thesis), Massachusetts Institute of Technology, USA. Accessed from database Access Address (12.05.2023): http:// https://dspace.mit.edu/handle/1721.1/13901
  • Hanaor, A. & Levy, R. (2001). Evaluation of deployable structures for space enclosures. International Journal of Space Structures, 16(4), 211–229. https://doi.org/10.1260/026635101760832172.
  • Ishii, K. (2000). Structural design of retractable roof structures, Boston: WIT Press.
  • Jaksch, S. & Sedlak, V. (2011). A foldable umbrella structure - Developments and Experiences. International Journal of Space Structures, 26(1), 1–18. doi:10.1260/0266-3511.26.1.1
  • Klook Singapore (n. d.). Fukuoka Softbank Hawks Baseball Match Ticket - Access Address (28.04.2023) from https://www.klook.com/en-SG/activity/19915-softbank-baseball-ticket-fukuoka-kyushu-kumamoto/.
  • Korkmaz, K. (2004). An analytical study of the design potentials in kinetic architecture. (Ph.D. Thesis), İzmir Institute of Technology, Turkey. Accessed from database Access Address (20.05.2023): https://openaccess.iyte.edu.tr/handle/11147/2917
  • Korkmaz, K. (2005). Generation of a new type of architectural umbrella. International Journal of Space Structures, 20(1), 35–41. https://doi.org/10.1260/0266351054214371
  • Lee, J. (2012). Adaptable, kinetic, responsive, and transformable architecture: An alternative approach to sustainable design (M.Sc. thesis). The University of Texas at Austin, USA. Accessed from database Access Address (20.05.2023): https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2012-08-6244
  • Mans, Ir. D. G. & Rodenburg, J. (2000). The Amsterdam arena: A multi-functional stadium. In Proceedings of the Institution of Civil Engineers - Structures and Buildings, 140(4), 323–331. doi:10.1680/stbu.2000.140.4.323.
  • Maden, F., Akgün, Y., Kiper, G., Gür, S., Yar, M. & Korkmaz, K. (2019). A critical review on classification and terminology of scissor structures. Journal of the International Association for Shell and Spatial Structures, 60(1), 47–64. https://doi.org/10.20898/j.iass.2019.199.029.
  • Megahed, N. A. (2016). Understanding kinetic architecture: Typology, classification, and design strategy. Architectural Engineering and Design Management, 13(2), 1–17. doi:10.1080/17452007.2016.1203676.
  • Merchan, C. H. H. (1987). Deployable structures. (MSc Thesis), Massachusetts Institute of Technology, Cambridge, USA.
  • Michalski, P.D., Kermel, E., Haug, R., Löhner, R., Wüchner, K.-U. & Bletzinger. (2011). Validation of the computational fluid–structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow. Journal of Wind Engineering and Industrial Aerodynamics - J WIND ENG IND AERODYN. 99. 400-413. 10.1016/j.jweia.2010.12.010.
  • Mohamed, M. & Abu Elfadle, H. (2013). Transformable Architecture, A key to Improve stadiums & sports buildings. In Proceedings of the Hosting Major International Events: Innovation, Creativity and Impact, Cairo, Egypt. Doi: 10.13140/2.1.4606.5448.
  • Mollaert, M. (1996). Retractable membrane roofs. Transactions on the Built Environment. WIT Press.; 21: pp. 407– 417. ISSN 1743-3509.
  • Nerdinger, W. (2005). Frei Otto: Complete Works: lightweight construction, natural design, Birkhauser, Basel/Boston.
  • Otto, F. & Burkhardt, B. (1972). IL 5 – Convertible roofs. Stuttgart: Institut für Leichte Flachentragwerke Press.
  • Otto, F. & Rasch B. (1996). Finding Form: Towards an Architecture of the Minimal, Edition Axel Menges.
  • Ozawa, Y. & Kawaguchi, K. (2000). Research on Retractable Roof System with Twisted Membrane, JOI JST.JSTAGE/seisankenkyu/Vol. 52, No. 4 pp.189-192.
  • Pellegrino, S. (2001). Deployable Structures in Engineering. In: Deployable Structures, 1–35. Springer Press. doi: https://doi.org/10.1007/978-3-7091-2584-7_1.
  • Phocas, M. C., Christoforou, E. G. & Dimitriou, P. (2020). Kinematics and control approach for deployable and reconfigurable rigid bar linkage structures. Engineering Structures, 208 (August 2019), 110310.doi: https://doi.org/10.1016/j.engstruct.2020.110310.
  • Santiago Calatrava – Architects & Engineers. (n.d.). Emergency Services Centre. / St. Gallen (Overview) - Access Address (12.05.2022) from https://calatrava.com/projects/emergency-services-centre-sankt- gallen.html.
  • Schumacher, M., Vogt M. M. & Schaeffer, O. (2010). Move: Architecture in motion–dynamic components and elements. Basel: Birkhäuser Press.
  • Stadiumdb.com Stadium Database. (n.d.). Design: Johan Cruyff Arena – Stadium. Access Address (28.04.2023) from http://stadiumdb.com/designs/ned/amsterdam_arena.
  • Stevenson, C. M. (2011). Morphological principles: current kinetic architectural structures. In Proceedings of Adaptive Architecture.; 1–12. London, UK.
  • Stureplan Pavilion (n.d.). Structure – construction projects, Access Address (12.05.2022) from https://www.str- ucture.com/en/what/construction-projects/reference/pavilion-stureplan-stockholm-sweden-2016/.
  • Tanno, Y., Sasaki, Y. & Nakai, M. (1994). Fukuoka Dome, Japan. Structural Engineering International, 4(3), 151–153. https://doi.org/10.2749/101686694780601881.
  • Temmerman, N. D. (2007). Design and analysis of deployable bar structures for mobile architectural applications. (Ph.D. Thesis). Vrije Universiteit Brussel, Belgium. Accessed from database Access Address (10.05.2023): http://www.vub.ac.be:8080/phd/verdedigingen2007/200706282a.pdf.
  • Torres, N. (2017). Deployable Arches Based on Regular Polygon Geometry. ArchiDoct, 89-105.
  • U53-Prototyp. SL Rasch. (n.d.). Access Address (27.06.2023) from https://www.sl-rasch.com/de/projekte/u53- prototyp/
  • Urban Toronto. (n.d.). Toronto - Rogers Centre renovations: Toronto Blue Jays: Populous. Access Address (28.04.2023): https://urbantoronto.ca/forum/threads/toronto-rogers-centre-renovations-m-s-toronto-blue- jays-populous.23794/page-53.
  • Valcárcel, J. P. (2022). Félix Escrig y las estructuras desplegables. Access Address (25.05.2023): https://www.researchgate.net/publication/358662664_Felix_Escrig_y_las_estructuras_desplegables.
  • Werner Sobek (2021). Merck Serono Building. Access Address (12.05.2022) from https://www.wernersobek.com/projects/merck-serono/.
  • Wikimapia (n.d.). Summer Stage (Burgas). Access Address (12.05.2022) from http://wikimapia.org/3798730/Summer-Theatre.
  • Wikipedia contributors. (2022a, April 19). Parken Stadium. Wikipedia. https://en.wikipedia.org/wiki/Parken_Stadium
  • Yaman, B. & Arpacıoğlu, Ü. (2021). Dinamik kontrollü uyarlanabilir cephe ve gölgeleme sistemleri. Journal of Architectural Sciences and Applications, 6 (1), 153-164. DOI: 10.30785/mbud.798233
  • Zaizen, M., Urakawa, T., Matsumoto, Y. & Takai, H. (2000). The collection of rainwater from dome stadiums in Japan, Urban Water 1(4), 355–359. doi:10.1016/s1462-0758(00)00028-5.

A Critical Review and Novel Classification Proposal for Kinetic Roof Structures

Year 2023, Volume: 8 Issue: 2, 587 - 608, 16.12.2023
https://doi.org/10.30785/mbud.1300141

Abstract

Kinetic structures have gained popularity in architecture and structural engineering due to their ability to meet environmental factors and user needs. Among these structures, kinetic roof structures hold an important place, as they are deployable and/or transformable structures that can change their forms between two or more different geometries. Various categorizations of kinetic roofs based on their material, mechanism, and geometry have been offered in the literature. However, in most studies, they are placed under the broader category of kinetic structures. This paper critically reviews existing classifications of kinetic roofs, highlighting their advantages and limitations. Subsequently, a novel detailed classification system for kinetic roof structures is proposed. The superiority, advantages, and shortcomings of this proposed classification are presented. A more comprehensive and tailored classification system for kinetic roofs is provided by this study, contributing to the literature in this area.

Supporting Institution

Yaşar University

Project Number

BAP 101

Thanks

This work formed part of the scientific research project “Investigating novel architectural uses and fabrication problems of scissor-hinge structural mechanisms”, which was accepted by the Project Evaluation Commission of Yaşar University under Project number BAP 101. In addition, the paper is produced from the published master’s thesis of the first author at Yaşar University, Graduate School in 2022. The article complies with national and international research and publication ethics.

References

  • Adrover, E. R. (2015). Deployable Structures. London: Laurence King Publishing.
  • Akgün, Y., Maden, F. & Korkmaz, K. (2013). Design of Adaptive Structures by Kinematic Synthesis. Proceedings of ICSA 2013 – Structures and Architecture: Concepts, Applications and Challenges. Guimaraes: CRC Press. pp. 976-982. Access Address: https://www.taylorfrancis.com/chapters/edit/10.1201/b15267-139/design-adaptive- structures-kinematic-synthesis-mechanisms-akg%C3%BCn-maden-korkmaz.
  • Asefi, M. (2010). Transformable and Kinetic Architectural Structures: Design, Evaluation and Application to Intelligent Architecture. Riga: VDM Verlag Dr. Müller Press. 9783639250626.
  • Del Grosso, A. E. & Basso, P. (2013). Deployable structures. In Proceedings of Advances in Science and Technology: 83, pp. 122-131. Trans Tech Publications Ltd.
  • Escrig, F. (1996). General survey of deployability in architecture. In Proceedings of MARAS’96: 2nd International Conference on Mobile and Rapidly Assembled Structures. Seville: Computational Mechanics Publications, pp. 3-22.
  • Fouad, S. M. A. E. (2012). Design methodology: Kinetic architecture. (Master Thesis), Alexandria University, Egypt. Accessed from database Access Address (10.05.2023): https://www.academia.edu/4485555/Design_Methodology_Kinetic_Architecture
  • Fournier, F., Houtman, R., & Reitsma, F. (2008). www.tensinet .com. July.
  • Gantes, C. J. (1991). A Design Methodology for Deployable Structures. (Ph.D. Thesis), Massachusetts Institute of Technology, USA. Accessed from database Access Address (12.05.2023): http:// https://dspace.mit.edu/handle/1721.1/13901
  • Hanaor, A. & Levy, R. (2001). Evaluation of deployable structures for space enclosures. International Journal of Space Structures, 16(4), 211–229. https://doi.org/10.1260/026635101760832172.
  • Ishii, K. (2000). Structural design of retractable roof structures, Boston: WIT Press.
  • Jaksch, S. & Sedlak, V. (2011). A foldable umbrella structure - Developments and Experiences. International Journal of Space Structures, 26(1), 1–18. doi:10.1260/0266-3511.26.1.1
  • Klook Singapore (n. d.). Fukuoka Softbank Hawks Baseball Match Ticket - Access Address (28.04.2023) from https://www.klook.com/en-SG/activity/19915-softbank-baseball-ticket-fukuoka-kyushu-kumamoto/.
  • Korkmaz, K. (2004). An analytical study of the design potentials in kinetic architecture. (Ph.D. Thesis), İzmir Institute of Technology, Turkey. Accessed from database Access Address (20.05.2023): https://openaccess.iyte.edu.tr/handle/11147/2917
  • Korkmaz, K. (2005). Generation of a new type of architectural umbrella. International Journal of Space Structures, 20(1), 35–41. https://doi.org/10.1260/0266351054214371
  • Lee, J. (2012). Adaptable, kinetic, responsive, and transformable architecture: An alternative approach to sustainable design (M.Sc. thesis). The University of Texas at Austin, USA. Accessed from database Access Address (20.05.2023): https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2012-08-6244
  • Mans, Ir. D. G. & Rodenburg, J. (2000). The Amsterdam arena: A multi-functional stadium. In Proceedings of the Institution of Civil Engineers - Structures and Buildings, 140(4), 323–331. doi:10.1680/stbu.2000.140.4.323.
  • Maden, F., Akgün, Y., Kiper, G., Gür, S., Yar, M. & Korkmaz, K. (2019). A critical review on classification and terminology of scissor structures. Journal of the International Association for Shell and Spatial Structures, 60(1), 47–64. https://doi.org/10.20898/j.iass.2019.199.029.
  • Megahed, N. A. (2016). Understanding kinetic architecture: Typology, classification, and design strategy. Architectural Engineering and Design Management, 13(2), 1–17. doi:10.1080/17452007.2016.1203676.
  • Merchan, C. H. H. (1987). Deployable structures. (MSc Thesis), Massachusetts Institute of Technology, Cambridge, USA.
  • Michalski, P.D., Kermel, E., Haug, R., Löhner, R., Wüchner, K.-U. & Bletzinger. (2011). Validation of the computational fluid–structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow. Journal of Wind Engineering and Industrial Aerodynamics - J WIND ENG IND AERODYN. 99. 400-413. 10.1016/j.jweia.2010.12.010.
  • Mohamed, M. & Abu Elfadle, H. (2013). Transformable Architecture, A key to Improve stadiums & sports buildings. In Proceedings of the Hosting Major International Events: Innovation, Creativity and Impact, Cairo, Egypt. Doi: 10.13140/2.1.4606.5448.
  • Mollaert, M. (1996). Retractable membrane roofs. Transactions on the Built Environment. WIT Press.; 21: pp. 407– 417. ISSN 1743-3509.
  • Nerdinger, W. (2005). Frei Otto: Complete Works: lightweight construction, natural design, Birkhauser, Basel/Boston.
  • Otto, F. & Burkhardt, B. (1972). IL 5 – Convertible roofs. Stuttgart: Institut für Leichte Flachentragwerke Press.
  • Otto, F. & Rasch B. (1996). Finding Form: Towards an Architecture of the Minimal, Edition Axel Menges.
  • Ozawa, Y. & Kawaguchi, K. (2000). Research on Retractable Roof System with Twisted Membrane, JOI JST.JSTAGE/seisankenkyu/Vol. 52, No. 4 pp.189-192.
  • Pellegrino, S. (2001). Deployable Structures in Engineering. In: Deployable Structures, 1–35. Springer Press. doi: https://doi.org/10.1007/978-3-7091-2584-7_1.
  • Phocas, M. C., Christoforou, E. G. & Dimitriou, P. (2020). Kinematics and control approach for deployable and reconfigurable rigid bar linkage structures. Engineering Structures, 208 (August 2019), 110310.doi: https://doi.org/10.1016/j.engstruct.2020.110310.
  • Santiago Calatrava – Architects & Engineers. (n.d.). Emergency Services Centre. / St. Gallen (Overview) - Access Address (12.05.2022) from https://calatrava.com/projects/emergency-services-centre-sankt- gallen.html.
  • Schumacher, M., Vogt M. M. & Schaeffer, O. (2010). Move: Architecture in motion–dynamic components and elements. Basel: Birkhäuser Press.
  • Stadiumdb.com Stadium Database. (n.d.). Design: Johan Cruyff Arena – Stadium. Access Address (28.04.2023) from http://stadiumdb.com/designs/ned/amsterdam_arena.
  • Stevenson, C. M. (2011). Morphological principles: current kinetic architectural structures. In Proceedings of Adaptive Architecture.; 1–12. London, UK.
  • Stureplan Pavilion (n.d.). Structure – construction projects, Access Address (12.05.2022) from https://www.str- ucture.com/en/what/construction-projects/reference/pavilion-stureplan-stockholm-sweden-2016/.
  • Tanno, Y., Sasaki, Y. & Nakai, M. (1994). Fukuoka Dome, Japan. Structural Engineering International, 4(3), 151–153. https://doi.org/10.2749/101686694780601881.
  • Temmerman, N. D. (2007). Design and analysis of deployable bar structures for mobile architectural applications. (Ph.D. Thesis). Vrije Universiteit Brussel, Belgium. Accessed from database Access Address (10.05.2023): http://www.vub.ac.be:8080/phd/verdedigingen2007/200706282a.pdf.
  • Torres, N. (2017). Deployable Arches Based on Regular Polygon Geometry. ArchiDoct, 89-105.
  • U53-Prototyp. SL Rasch. (n.d.). Access Address (27.06.2023) from https://www.sl-rasch.com/de/projekte/u53- prototyp/
  • Urban Toronto. (n.d.). Toronto - Rogers Centre renovations: Toronto Blue Jays: Populous. Access Address (28.04.2023): https://urbantoronto.ca/forum/threads/toronto-rogers-centre-renovations-m-s-toronto-blue- jays-populous.23794/page-53.
  • Valcárcel, J. P. (2022). Félix Escrig y las estructuras desplegables. Access Address (25.05.2023): https://www.researchgate.net/publication/358662664_Felix_Escrig_y_las_estructuras_desplegables.
  • Werner Sobek (2021). Merck Serono Building. Access Address (12.05.2022) from https://www.wernersobek.com/projects/merck-serono/.
  • Wikimapia (n.d.). Summer Stage (Burgas). Access Address (12.05.2022) from http://wikimapia.org/3798730/Summer-Theatre.
  • Wikipedia contributors. (2022a, April 19). Parken Stadium. Wikipedia. https://en.wikipedia.org/wiki/Parken_Stadium
  • Yaman, B. & Arpacıoğlu, Ü. (2021). Dinamik kontrollü uyarlanabilir cephe ve gölgeleme sistemleri. Journal of Architectural Sciences and Applications, 6 (1), 153-164. DOI: 10.30785/mbud.798233
  • Zaizen, M., Urakawa, T., Matsumoto, Y. & Takai, H. (2000). The collection of rainwater from dome stadiums in Japan, Urban Water 1(4), 355–359. doi:10.1016/s1462-0758(00)00028-5.
There are 44 citations in total.

Details

Primary Language English
Subjects Architecture
Journal Section Research Articles
Authors

Bensu Atlamaz 0000-0002-0185-3174

Yenal Akgün 0000-0001-5595-9153

Project Number BAP 101
Publication Date December 16, 2023
Submission Date May 21, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Atlamaz, B., & Akgün, Y. (2023). A Critical Review and Novel Classification Proposal for Kinetic Roof Structures. Journal of Architectural Sciences and Applications, 8(2), 587-608. https://doi.org/10.30785/mbud.1300141