Covid-19 Sonrası Önerilen Havalandırma Yaklaşımlarının Üniversite Dersliklerinde Enfeksiyon Olasılığı, Vaka Sayısı ve Havalandırma Oranlarına Etkisi
Year 2024,
Volume: 9 Issue: 1, 212 - 226, 30.07.2024
Hasan Murat Çetin
,
Mustafa Özgünler
,
Ümit Arpacıoğlu
Abstract
COVID-19 salgını sonrasında enfeksiyon kontrolü için iki havalandırma yaklaşımı benimsenmiştir. Birincisi, uluslararası kuruluşlar tarafından önerilen EN 16798-1 havalandırma standardıdır. İkincisi, enfeksiyon riskine göre belirlenen havalandırma tasarımıdır. Bu çalışmada, dört ayrı üniversite sınıfındaki çeşitli COVID-19 sonrası havalandırma senaryolarının, COVID-19 enfeksiyon olasılığı, vaka sayısı ve havalandırma oranları üzerindeki etkilerini araştırıldı. Enfeksiyon riskine dayalı havalandırma oranları ve enfeksiyon riski, SARS-CoV-2 virüsüne göre kalibre edilen Wells-Riley matematiksel modeliyle belirlenmiştir. Bulgular, EN 16798-1 havalandırma standardının dersliklerde enfeksiyon riski açısından yetersiz olabileceğini gösterdi. Enfeksiyon riskine dayalı belirlenen havalandırma oranlarının, LEED sertifikalı okullarda bile mevcut HVAC sistem kapasiteleri tarafından karşılanamayabileceğini gösterdi. Gelecekteki olası pandemilerde, salgının kontrol altına alınabilmesi için mevcut havalandırma standartlarının ve okullardaki iklimlendirme sistem tasarımlarının yeniden gözden geçirilmesi gerekmektedir.
References
- Achaiah, N. C., Subbarajasetty, S. B., & Shetty, R. M. (2020). R0 and Re of COVID-19: Can We Predict When the Pandemic Outbreak will be Contained?. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 24(11), 1125–1127. https://doi.org/10.5005/jp-journals-10071-23649
- Adams, W. C. (1993). Measurement of breathing rate and volume in routinely performed daily activities: final
report, contract no. A033-205. California Environmental Protection Agency, Air Resources Board, Research
Division.
- Allen, J. G., & Ibrahim, A. M. (2021). Indoor Air Changes and Potential Implications for SARS-CoV-2 Transmission.
JAMA, 325 (20), 2112–13. https:// doi: 10.1001/jama.2021.5053
- American Society of Heating Refrigerating and Air-Conditioning Engineers. (2020). ASHRAE Epidemic Task Force:
Schools & Universities. Acces Address (16.02.2022):
https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-reopening-schools-and-
universities-c19-guidance.pdf
- Arizona State University. (2019). ASU Campus Technology Space Standards. Acces Address (30.01.2021):
https://www.asu.edu/fm/documents/project_guidelines/Classroom-Design-Guidelines.pdf
- Azimi, P., & Stephens, B. (2013). HVAC Filtration for Controlling Infectious Airborne Disease Transmission in Indoor
Environments: Predicting Risk Reductions and Operational Costs. Building and Environment, 70, 150–60.
https://doi.org/10.1016/j.buildenv.2013.08.025
- Bhagat, R. K., Wykes, M. D., Dalziel, S. B., & Linden, P. F. (2020). Effects of ventilation on the indoor spread of COVID-
19. Journal of Fluid Mechanics, 903, F1. https://doi:10.1017/jfm.2020.720
- Binazzi, B., Lanini, B., Bianchi, R., Romagnoli, I., Nerini, M., Gigliotti, F., ... & Scano, G. (2006). Breathing pattern and
kinematics in normal subjects during speech, singing and loud whispering. Acta physiologica, 186(3), 233-246.
https://doi: 10.1111/j.1748-1716.2006.01529.x
- Buonanno, G., Morawska, L., & Stabile, L. (2020). Quantitative assessment of the risk of airborne transmission of
SARS-CoV-2 infection: prospective and retrospective applications. Environment International, 145, 106112.
https://doi: 10.1016/j.envint.2020.106112
- Buonanno, G., Stabile, L., & Morawska, L. (2020). Estimation of airborne viral emission: Quanta emission rate of
SARS-CoV-2 for infection risk assessment. Environment International, 141, 105794. https://doi:
10.1016/j.envint.2020.105794
- Chatoutsidou, S. E., & Lazaridis, M. (2019). Assessment of the impact of particulate dry deposition on soiling of
indoor cultural heritage objects found in churches and museums/libraries. Journal of Cultural Heritage, 39, 221-
228. https://doi: 10.1016/j.culher.2019.02.017
- Chen, S. C., Chang, C. F., & Liao, C. M. (2006). Predictive models of control strategies involved in containing
indoor airborne infections. Indoor Air, 16(6), 469–481. https://doi.org/10.1111/j.1600-0668.2006.00443.x
- Dai, H., & Zhao, B. (2020). Association of the Infection Probability of COVID-19 with Ventilation Rates in Confined
Spaces. Building Simulation 13(6),1321–27. https://doi: 10.1007/s12273-020-0703-5
- Diapouli, E., Chaloulakou, A., & Koutrakis, P. (2013). Estimating the concentration of indoor particles of outdoor
origin: A review. Journal of the Air & Waste Management Association, 63(10), 1113-1129. https://doi:
10.1080/10962247.2013.791649
- Fears, A. C., Klimstra, W. B., Duprex, P., Hartman, A., Weaver, S. C., Plante, K. C., ... & Roy, C. J. (2020). Comparative
dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in
aerosol suspensions. MedRxiv. https:// 10.1101/2020.04.13.20063784
- Foster, A., & Kinzel, M. (2021). Estimating COVID-19 Exposure in a Classroom Setting: A Comparison between
Mathematical and Numerical Models. Physics of Fluids, 33(2), 021904. https://doi: 10.1063/5.0040755
- Gammaitoni, L., & Nucci, M. C., (1997). Using a Mathematical Model to Evaluate the Efficacy of TB Control
Measures. Emerging Infectious Diseases, 3(3), 335–42. https://doi: 10.3201/eid0303.970310
- Gao, C. X., Li, Y., Wei, J., Cotton, S., Hamilton, M., Wang, L., & Cowling, B. J. (2021). Multi-route respiratory infection:
when a transmission route may dominate. Science of the Total Environment, 752, 141856. https://doi:
10.1016/j.scitotenv.2020.141856
- Guo, M., Xu, P., Xiao, T., He, R., Dai, M., & Miller, S. L. (2021). Review and comparison of HVAC operation guidelines in
different countries during the COVID-19 pandemic. Building and Environment, 187, 107368. https://doi:
10.1016/j.buildenv.2020.107368
- Hou, D., Katal, A., & Wang, L. (2021). Bayesian calibration of using CO2 sensors to assess ventilation conditions
and associated COVID-19 airborne aerosol transmission risk in schools. medRxiv, 2021-01.
https://doi.org/10.1101/2021.01.29.21250791
- Jones, E., Young, A., Clevenger, K., Salimifard, P., Wu, E., Luna, M. L., ... & Allen, J. (2020). Healthy schools: risk
reduction strategies for reopening schools. Harvard TH Chan School of Public Health Healthy Buildings program.
Acces Address (18.02.2022): https://schools.forhealth.org/wp-content/uploads/sites/19/2020/11/Harvard-
Healthy-Buildings-Program-COVID19-Risk-Reduction-in-Schools-Nov-2020.pdf
- Kurnitski, J., Kiil, M., Wargocki, P., Boerstra, A., Seppänen, O., Olesen, B., & Morawska, L. (2021). Respiratory infection
risk-based ventilation design method. Building and Environment, 206, 108387. https://doi:
10.1016/j.buildenv.2021.108387
- Li, D. T., Samaranayake, L. P., Leung, Y. Y., & Neelakantan, P. (2021). Facial protection in the era of COVID‐19: A
narrative review. Oral diseases, 27, 665-673. https://doi: 10.1111/odi.13460
- Lipinski, T., Ahmad, D., Serey, N., & Jouhara, H. (2020). Review of ventilation strategies to reduce the risk of
disease transmission in high occupancy buildings. International Journal of Thermofluids, 7, 100045. https://doi:
10.1016/j.ijft.2020.100045
- Lyngse, F. P., Kirkeby, C. T., Denwood, M., Christiansen, L. E., Mølbak, K., Møller, C. H., ... & Mortensen, L. H. (2022).
Household transmission of SARS-CoV-2 Omicron variant of concern subvariants BA. 1 and BA. 2 in Denmark.
Nature Communications, 13(1), 5760. https://doi: 10.1038/s41467-022-33498-0
- Mcgill University. (2020). Mcgill University Classroom Guidelines And Standards. Acces Address (6.03.2023):
https://www.mcgill.ca/tls/files/tls/mcgill_university_classroom_guidelines_and_standards_june_17_2019.pdf
- Miller, S. L., Nazaroff, W. W., Jimenez, J. L., Boerstra, A., Buonanno, G., Dancer, S. J., ... & Noakes, C. (2021).
Transmission of SARS‐CoV‐2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading
event. Indoor Air, 31(2), 314-323. https://doi.org/10.1111/ina.12751
- Nazaroff, W. W. (2022). Indoor aerosol science aspects of SARS‐CoV‐2 transmission. Indoor Air, 32(1), e12970.
https://doi:10.1111/ina.12970
- Park, S., Choi, Y., Song, D., & Kim, E. K. (2021). Natural ventilation strategy and related issues to prevent
coronavirus disease 2019 (COVID-19) airborne transmission in a school building. Science of the Total
Environment, 789, 147764. https://doi: 10.1016/j.scitotenv.2021.147764
- REHVA. (2021). How to operate HVAC and other building service systems to prevent the spread of the
coronavirus (SARS-CoV-2) disease (COVID-19) in workplaces. REHVA. Federation of European Heating,
Ventilation and Air Conditioning Association. Acces Address (6.03.2024):
https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf
- Schibuola, L., & Tambani, C. (2021). High energy efficiency ventilation to limit COVID-19 contagion in school
environments. Energy and Buildings, 240, 110882. https://doi: 10.1016/j.enbuild.2021.110882
- Stabile, L., Pacitto, A., Mikszewski, A., Morawska, L., & Buonanno, G. (2021). Ventilation procedures to minimize the
airborne transmission of viruses in classrooms. Building and environment, 202, 108042. https://doi:
10.1016/j.buildenv.2021.108042
- Stephens, B. (2012). HVAC filtration and the Wells-Riley approach to assessing risks of infectious airborne
diseases. National Air Filtration Association (NAFA) Foundation Report. Acces Address (6.03.2024): https://built-
envi.com/publications/nafa_iit_wellsriley%20-%20FINAL.pdf
- Sze To, G. N., & Chao, C. Y. H. (2010). Review and comparison between the Wells–Riley and dose‐response
approaches to risk assessment of infectious respiratory diseases. Indoor Air, 20(1), 2-16. https://doi: 10.1111/j.1600-
0668.2009.00621.x
- Thatcher, T. L., Lai, A. C., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and
air speed on particle deposition rates indoors. Atmospheric Environment, 36(11), 1811-1819. https://doi:
10.1016/S1352-2310(02)00157-7
- The University of British Columbia. (2014). UBC Learning Space Design Guidelines. Acces Address (4.03.2023):
https://infrastructuredevelopment.ubc.ca/wp-content/uploads/2016/12/LearningSpaceDesignGuidelines.pdf
- University of California. (2015). Design guidelines. Acces Address (4.07.2023): https://its.ucsc.edu/media-
system-design/Draft-Classroom-Guidelines-3-12-15.pdf
- University of Michigan. (2012). University Of Michigan Considerations for Planning New General Purpose
Classrooms. Acces Address (5.02.2023): https://provost.umich.edu/wp-
content/uploads/2022/06/ClassroomPlanningConsiderations.pdf
- University of Toronto. (2012). Design Criteria For Classrooms University Of Toronto. Acces Address (12.11.2023):
https://lsm.utoronto.ca/standard/standards_ut/Design%20Criteria%20for%20Classrooms%202012_07_09.pdf
- Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., ... & Munster, V. J.
(2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England journal of
medicine, 382(16), 1564-1567. https://doi: 10.1056/NEJMc2004973
- Vignolo, A., Gómez, A. P., Draper, M., & Mendina, M. (2022). Quantitative assessment of natural ventilation in an
elementary school classroom in the context of COVID-19 and its impact in airborne transmission. Applied
Sciences, 12(18), 9261. https://doi: 10.3390/app12189261
- Welsch, R., Hecht, H., Chuang, L., & von Castell, C. (2020). Interpersonal Distance in the SARS-CoV-2 Crisis.
Human Factors, 62(7), 1095-1101. https://doi.org/10.1177/0018720820956858
- World Health Organization. (2021). Roadmap to improve and ensure good indoor ventilation in the context of
COVID-19. Acces Address (6.04.2024): https://iris.who.int/bitstream/handle/10665/339857/9789240021280-
eng.pdf?sequence=1&isAllowed=y
- Yan, Y., Li, X., Shang, Y., & Tu, J. (2017). Evaluation of airborne disease infection risks in an airliner cabin using the
Lagrangian-based Wells-Riley approach. Building and Environment, 121, 79-92. https://doi:
10.1016/j.buildenv.2017.05.013
- Yang, W., & Marr, L. C. (2011). Dynamics of airborne influenza A viruses indoors and dependence on humidity.
PLOS ONE, 6(6), e21481. https://doi: 10.1371/journal.pone.0021481
- Yılmazoğlu, M. Z. (2020). Covid-19 Enfeksiyon Riski Hesaplama Aracı. Türk Tesisat Mühendisleri Derneği Dergisi,
127, 76-78. Acces Address (13.10.2023): https://www.ttmd.org.tr/upload/files/18912ttmd-dergisi-127.pdf
- Zhang, S., & Lin, Z. (2021). Dilution-based evaluation of airborne infection risk-Thorough expansion of Wells-Riley
model. Building and Environment, 194, 107674. https://doi: 10.1016/j.buildenv.2021.107674
The Effect of Suggested Ventilation Approaches After Covid-19 on The Probability of Infection, Number of Cases and Ventilation Rates in University Classrooms
Year 2024,
Volume: 9 Issue: 1, 212 - 226, 30.07.2024
Hasan Murat Çetin
,
Mustafa Özgünler
,
Ümit Arpacıoğlu
Abstract
After COVID-19, two ventilation approaches have been adopted for infection control. The first is the EN 16798-1 ventilation standard recommended by international organizations. The second is ventilation design, determined according to the risk of infection. This study investigated the effects of various post-COVID-19 ventilation scenarios on the probability of COVID-19 infection, the number of cases, and ventilation rates in four separate university classrooms. Ventilation rates based on infection risk and infection risk were determined by the Wells-Riley mathematical model calibrated to the SARS-CoV-2 virus. The findings showed that the EN 16798-1 ventilation standard may be inadequate in terms of infection risk in classrooms. It showed that ventilation rates determined based on infection risk may not be met by existing HVAC system capacities, even in LEED-certified schools. In possible future pandemics, current ventilation standards and air conditioning system designs in schools should be reviewed in order to control the outbreak.
Ethical Statement
All authors contributed equally to the article. There is no conflict of interest.
Thanks
We would like to thank Mimar Sinan Fine Arts University, Department of Building Physics and Materials for their support and contribution.
References
- Achaiah, N. C., Subbarajasetty, S. B., & Shetty, R. M. (2020). R0 and Re of COVID-19: Can We Predict When the Pandemic Outbreak will be Contained?. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 24(11), 1125–1127. https://doi.org/10.5005/jp-journals-10071-23649
- Adams, W. C. (1993). Measurement of breathing rate and volume in routinely performed daily activities: final
report, contract no. A033-205. California Environmental Protection Agency, Air Resources Board, Research
Division.
- Allen, J. G., & Ibrahim, A. M. (2021). Indoor Air Changes and Potential Implications for SARS-CoV-2 Transmission.
JAMA, 325 (20), 2112–13. https:// doi: 10.1001/jama.2021.5053
- American Society of Heating Refrigerating and Air-Conditioning Engineers. (2020). ASHRAE Epidemic Task Force:
Schools & Universities. Acces Address (16.02.2022):
https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-reopening-schools-and-
universities-c19-guidance.pdf
- Arizona State University. (2019). ASU Campus Technology Space Standards. Acces Address (30.01.2021):
https://www.asu.edu/fm/documents/project_guidelines/Classroom-Design-Guidelines.pdf
- Azimi, P., & Stephens, B. (2013). HVAC Filtration for Controlling Infectious Airborne Disease Transmission in Indoor
Environments: Predicting Risk Reductions and Operational Costs. Building and Environment, 70, 150–60.
https://doi.org/10.1016/j.buildenv.2013.08.025
- Bhagat, R. K., Wykes, M. D., Dalziel, S. B., & Linden, P. F. (2020). Effects of ventilation on the indoor spread of COVID-
19. Journal of Fluid Mechanics, 903, F1. https://doi:10.1017/jfm.2020.720
- Binazzi, B., Lanini, B., Bianchi, R., Romagnoli, I., Nerini, M., Gigliotti, F., ... & Scano, G. (2006). Breathing pattern and
kinematics in normal subjects during speech, singing and loud whispering. Acta physiologica, 186(3), 233-246.
https://doi: 10.1111/j.1748-1716.2006.01529.x
- Buonanno, G., Morawska, L., & Stabile, L. (2020). Quantitative assessment of the risk of airborne transmission of
SARS-CoV-2 infection: prospective and retrospective applications. Environment International, 145, 106112.
https://doi: 10.1016/j.envint.2020.106112
- Buonanno, G., Stabile, L., & Morawska, L. (2020). Estimation of airborne viral emission: Quanta emission rate of
SARS-CoV-2 for infection risk assessment. Environment International, 141, 105794. https://doi:
10.1016/j.envint.2020.105794
- Chatoutsidou, S. E., & Lazaridis, M. (2019). Assessment of the impact of particulate dry deposition on soiling of
indoor cultural heritage objects found in churches and museums/libraries. Journal of Cultural Heritage, 39, 221-
228. https://doi: 10.1016/j.culher.2019.02.017
- Chen, S. C., Chang, C. F., & Liao, C. M. (2006). Predictive models of control strategies involved in containing
indoor airborne infections. Indoor Air, 16(6), 469–481. https://doi.org/10.1111/j.1600-0668.2006.00443.x
- Dai, H., & Zhao, B. (2020). Association of the Infection Probability of COVID-19 with Ventilation Rates in Confined
Spaces. Building Simulation 13(6),1321–27. https://doi: 10.1007/s12273-020-0703-5
- Diapouli, E., Chaloulakou, A., & Koutrakis, P. (2013). Estimating the concentration of indoor particles of outdoor
origin: A review. Journal of the Air & Waste Management Association, 63(10), 1113-1129. https://doi:
10.1080/10962247.2013.791649
- Fears, A. C., Klimstra, W. B., Duprex, P., Hartman, A., Weaver, S. C., Plante, K. C., ... & Roy, C. J. (2020). Comparative
dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in
aerosol suspensions. MedRxiv. https:// 10.1101/2020.04.13.20063784
- Foster, A., & Kinzel, M. (2021). Estimating COVID-19 Exposure in a Classroom Setting: A Comparison between
Mathematical and Numerical Models. Physics of Fluids, 33(2), 021904. https://doi: 10.1063/5.0040755
- Gammaitoni, L., & Nucci, M. C., (1997). Using a Mathematical Model to Evaluate the Efficacy of TB Control
Measures. Emerging Infectious Diseases, 3(3), 335–42. https://doi: 10.3201/eid0303.970310
- Gao, C. X., Li, Y., Wei, J., Cotton, S., Hamilton, M., Wang, L., & Cowling, B. J. (2021). Multi-route respiratory infection:
when a transmission route may dominate. Science of the Total Environment, 752, 141856. https://doi:
10.1016/j.scitotenv.2020.141856
- Guo, M., Xu, P., Xiao, T., He, R., Dai, M., & Miller, S. L. (2021). Review and comparison of HVAC operation guidelines in
different countries during the COVID-19 pandemic. Building and Environment, 187, 107368. https://doi:
10.1016/j.buildenv.2020.107368
- Hou, D., Katal, A., & Wang, L. (2021). Bayesian calibration of using CO2 sensors to assess ventilation conditions
and associated COVID-19 airborne aerosol transmission risk in schools. medRxiv, 2021-01.
https://doi.org/10.1101/2021.01.29.21250791
- Jones, E., Young, A., Clevenger, K., Salimifard, P., Wu, E., Luna, M. L., ... & Allen, J. (2020). Healthy schools: risk
reduction strategies for reopening schools. Harvard TH Chan School of Public Health Healthy Buildings program.
Acces Address (18.02.2022): https://schools.forhealth.org/wp-content/uploads/sites/19/2020/11/Harvard-
Healthy-Buildings-Program-COVID19-Risk-Reduction-in-Schools-Nov-2020.pdf
- Kurnitski, J., Kiil, M., Wargocki, P., Boerstra, A., Seppänen, O., Olesen, B., & Morawska, L. (2021). Respiratory infection
risk-based ventilation design method. Building and Environment, 206, 108387. https://doi:
10.1016/j.buildenv.2021.108387
- Li, D. T., Samaranayake, L. P., Leung, Y. Y., & Neelakantan, P. (2021). Facial protection in the era of COVID‐19: A
narrative review. Oral diseases, 27, 665-673. https://doi: 10.1111/odi.13460
- Lipinski, T., Ahmad, D., Serey, N., & Jouhara, H. (2020). Review of ventilation strategies to reduce the risk of
disease transmission in high occupancy buildings. International Journal of Thermofluids, 7, 100045. https://doi:
10.1016/j.ijft.2020.100045
- Lyngse, F. P., Kirkeby, C. T., Denwood, M., Christiansen, L. E., Mølbak, K., Møller, C. H., ... & Mortensen, L. H. (2022).
Household transmission of SARS-CoV-2 Omicron variant of concern subvariants BA. 1 and BA. 2 in Denmark.
Nature Communications, 13(1), 5760. https://doi: 10.1038/s41467-022-33498-0
- Mcgill University. (2020). Mcgill University Classroom Guidelines And Standards. Acces Address (6.03.2023):
https://www.mcgill.ca/tls/files/tls/mcgill_university_classroom_guidelines_and_standards_june_17_2019.pdf
- Miller, S. L., Nazaroff, W. W., Jimenez, J. L., Boerstra, A., Buonanno, G., Dancer, S. J., ... & Noakes, C. (2021).
Transmission of SARS‐CoV‐2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading
event. Indoor Air, 31(2), 314-323. https://doi.org/10.1111/ina.12751
- Nazaroff, W. W. (2022). Indoor aerosol science aspects of SARS‐CoV‐2 transmission. Indoor Air, 32(1), e12970.
https://doi:10.1111/ina.12970
- Park, S., Choi, Y., Song, D., & Kim, E. K. (2021). Natural ventilation strategy and related issues to prevent
coronavirus disease 2019 (COVID-19) airborne transmission in a school building. Science of the Total
Environment, 789, 147764. https://doi: 10.1016/j.scitotenv.2021.147764
- REHVA. (2021). How to operate HVAC and other building service systems to prevent the spread of the
coronavirus (SARS-CoV-2) disease (COVID-19) in workplaces. REHVA. Federation of European Heating,
Ventilation and Air Conditioning Association. Acces Address (6.03.2024):
https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf
- Schibuola, L., & Tambani, C. (2021). High energy efficiency ventilation to limit COVID-19 contagion in school
environments. Energy and Buildings, 240, 110882. https://doi: 10.1016/j.enbuild.2021.110882
- Stabile, L., Pacitto, A., Mikszewski, A., Morawska, L., & Buonanno, G. (2021). Ventilation procedures to minimize the
airborne transmission of viruses in classrooms. Building and environment, 202, 108042. https://doi:
10.1016/j.buildenv.2021.108042
- Stephens, B. (2012). HVAC filtration and the Wells-Riley approach to assessing risks of infectious airborne
diseases. National Air Filtration Association (NAFA) Foundation Report. Acces Address (6.03.2024): https://built-
envi.com/publications/nafa_iit_wellsriley%20-%20FINAL.pdf
- Sze To, G. N., & Chao, C. Y. H. (2010). Review and comparison between the Wells–Riley and dose‐response
approaches to risk assessment of infectious respiratory diseases. Indoor Air, 20(1), 2-16. https://doi: 10.1111/j.1600-
0668.2009.00621.x
- Thatcher, T. L., Lai, A. C., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and
air speed on particle deposition rates indoors. Atmospheric Environment, 36(11), 1811-1819. https://doi:
10.1016/S1352-2310(02)00157-7
- The University of British Columbia. (2014). UBC Learning Space Design Guidelines. Acces Address (4.03.2023):
https://infrastructuredevelopment.ubc.ca/wp-content/uploads/2016/12/LearningSpaceDesignGuidelines.pdf
- University of California. (2015). Design guidelines. Acces Address (4.07.2023): https://its.ucsc.edu/media-
system-design/Draft-Classroom-Guidelines-3-12-15.pdf
- University of Michigan. (2012). University Of Michigan Considerations for Planning New General Purpose
Classrooms. Acces Address (5.02.2023): https://provost.umich.edu/wp-
content/uploads/2022/06/ClassroomPlanningConsiderations.pdf
- University of Toronto. (2012). Design Criteria For Classrooms University Of Toronto. Acces Address (12.11.2023):
https://lsm.utoronto.ca/standard/standards_ut/Design%20Criteria%20for%20Classrooms%202012_07_09.pdf
- Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., ... & Munster, V. J.
(2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England journal of
medicine, 382(16), 1564-1567. https://doi: 10.1056/NEJMc2004973
- Vignolo, A., Gómez, A. P., Draper, M., & Mendina, M. (2022). Quantitative assessment of natural ventilation in an
elementary school classroom in the context of COVID-19 and its impact in airborne transmission. Applied
Sciences, 12(18), 9261. https://doi: 10.3390/app12189261
- Welsch, R., Hecht, H., Chuang, L., & von Castell, C. (2020). Interpersonal Distance in the SARS-CoV-2 Crisis.
Human Factors, 62(7), 1095-1101. https://doi.org/10.1177/0018720820956858
- World Health Organization. (2021). Roadmap to improve and ensure good indoor ventilation in the context of
COVID-19. Acces Address (6.04.2024): https://iris.who.int/bitstream/handle/10665/339857/9789240021280-
eng.pdf?sequence=1&isAllowed=y
- Yan, Y., Li, X., Shang, Y., & Tu, J. (2017). Evaluation of airborne disease infection risks in an airliner cabin using the
Lagrangian-based Wells-Riley approach. Building and Environment, 121, 79-92. https://doi:
10.1016/j.buildenv.2017.05.013
- Yang, W., & Marr, L. C. (2011). Dynamics of airborne influenza A viruses indoors and dependence on humidity.
PLOS ONE, 6(6), e21481. https://doi: 10.1371/journal.pone.0021481
- Yılmazoğlu, M. Z. (2020). Covid-19 Enfeksiyon Riski Hesaplama Aracı. Türk Tesisat Mühendisleri Derneği Dergisi,
127, 76-78. Acces Address (13.10.2023): https://www.ttmd.org.tr/upload/files/18912ttmd-dergisi-127.pdf
- Zhang, S., & Lin, Z. (2021). Dilution-based evaluation of airborne infection risk-Thorough expansion of Wells-Riley
model. Building and Environment, 194, 107674. https://doi: 10.1016/j.buildenv.2021.107674