Research Article
BibTex RIS Cite

Kış Kentlerinde Yapı Bloğu Yöneliminin Dış Mekân Termal Konfor Üzerine Etkisinin ENVI-met ile Analizi

Year 2024, Volume: 9 Issue: 2, 737 - 755, 26.12.2024
https://doi.org/10.30785/mbud.1530027

Abstract

Kentleşmenin artması kentlerdeki bina yoğunluğu, sert zemin fazlalığı kentsel ısı ada etkisini arttırmakta ve bu da dış mekan termal konforu olumsuz yönde etkilemektedir. Sadece yapı fazlalığı değil aynı zamanda yapı bloklarının mekandaki yönlenmesinin de termal konforu etkilediği öngörülmektedir. Yapılan bu çalışmada ENVI-met 5.6.1 yazılım modeli kullanılarak 4 farklı açıda yönelim senaryosu “0°, 45°, 90°, 135°” çalışılmıştır. Çalışma alanı olarak Erzurum kent merkezinde gelişme aksında yer alan, yeni yerleşim yeri Yıldızkent tercih edilmiştir. Çalışma sonucunda 45° açılı cadde yöneliminin hem kış hem yaz ayı için termal konfor açısından en uygun senaryo olduğu tespit edilmiştir. Bu senaryo analizinde kış ayları için 1.0 C°’lik bir PET iyileşmesi olduğu ve termal konforu olumlu yönde etkilediği belirlenmiştir. Yapı bloğu yönlenmesinin termal konfor üzerinde etkisi olduğu belirlenmiştir.

References

  • Acero, J. A. & Arrizabalaga, J. (2018). Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and Applied Climatology, 131, 455-469.
  • Acero, J. A., Koh, E. J., Ruefenacht, L. A. & Norford, L. K. (2021). Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Climate, 36, 100775.
  • Achour-Younsi, S. & Kharrat, F. (2016). Outdoor thermal comfort: impact of the geometry of an urban street canyon in a Mediterranean subtropical climate–case study Tunis, Tunisia. Procedia-Social and Behavioral Sciences, 216, 689-700.
  • Ali-Toudert, F. & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108.
  • Ali-Toudert, F. & Mayer, H. (2007). Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81(6), 742-754.
  • Anonymous. (2023). https://www.nufusune.com/palandoken-ilce- nufusu-erzurum, (Access Date: 28.01.2023)
  • Battista, G., Carnielo, E. & Vollaro, R. D. L. (2016). Thermal impact of a redeveloped area on localized urban microclimate: A case study in Rome. Energy and Buildings, 133, 446-454.
  • Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H. & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56, 515-535.
  • Bruse, M. (1999). Modelling and strategies for improved urban climates. Biometeorology and Urban Climatology at the Turn of the Millenium, Sydney, 8-12 Novembre 1999, 6p.
  • Bruse, M. & Fleer, H. (1998). Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling and Software. https://doi.org/10.1016/S1364- 8152(98)00042-5
  • Cui, P., Jiang, J., Zhang, J. & Wang, L. (2023). Effect of street design on UHI and energy consumption based on vegetation and street aspect ratio: Taking Harbin as an example. Sustainable Cities and Society, 92, 104484.
  • De Freitas, C. R. & Grigorieva, E. A. (2017). A comparison and appraisal of a comprehensive range of human thermal climate indices. International Journal of Biometeorology, 61, 487-512.
  • De, B. & Mukherjee, M. (2016). Impact of canyon design on thermal comfort ın warm humid cities: A Case of Rajarhat-Newtown Kolkata. India. 4th International Conference on Countermeasures to Urban Heat Island, National University Of Singapore, Singapore
  • Ertem Mutlu, B. & Yılmaz, S. (2024). Determining the effect of different green area ratios on outdoor thermal comfort by Envi-Met analysis: The Example of Erzurum. Adnan Menderes University Faculty of Agriculture Journal of Agricultural Sciences, 21(1), 17-23.
  • Ertem Mutlu, B. (2023). Farklı kentsel yeşil alan sistem senaryolarının dış mekan termal konfor açısından değerlendirilmesi (Doctoral Thesis). Institute of Science, Atatürk University, Erzurum. Access Date (04.08.2024): https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • ENVI-met Software. (2024) https://envi-met.com/, (Access Date; 01.08.2024)
  • Faragallah, R. N. & Ragheb, R. A. (2022). Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met. Ain Shams Engineering Journal, 13(3), 101609.
  • Ghiaus, C., Allard, F., Santamouris, M., Georgakis, C., Roulet, C. A., Germano, M., ... & Roche, L. (2005). Natural ventilation of urban buildings–summary of URBVENT project. In Proceedings of the 1st International Conference on passive and low energy cooling for the built environment: PALENC (pp. 29-33).
  • Guo, T., Zhao, Y., Yang, J., Zhong, Z., Ji, K., Zhong, Z. & Luo, X. (2023). Effects of tree arrangement and leaf area ındex on the thermal comfort of outdoor children’s activity space in hot−humid areas. Buildings, 13(1), 214.
  • He, B. J., Wang, J., Liu, H. & Ulpiani, G. (2021). Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environmental Research, 193, 110584.
  • Huang, C. H., Tsai, H. H. & Chen, H. C. (2020). Influence of weather factors on thermal comfort in subtropical urban environments. Sustainability, 12(5), 2001.
  • IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/
  • Jamali, F. S., Khaledi, S. & Razavian, M. T. (2021). Seasonal impact of urban parks on land surface temperature (LST) in semi-arid city of Tehran. International Journal of Urban Sustainable Development, 1–17. doi:10.1080/19463138.2021.1872083
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorol Z, 15, 259- 263.
  • Köppen, W. & Geiger, R. (1954). Klima der Erde (Climate of the earth). Wall Map 1:16 Mill. Klett-Perthes. Gotha.
  • Li, G., Ren, Z. & Zhan, C. (2020). Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Building and Environment, 169, 106587.
  • Liu, Z., Zheng, S. & Zhao, L. (2018). Evaluation of the ENVI-Met vegetation model of four common tree species in a subtropical hot-humid area. Atmosphere, 9(5), 198.
  • Ma, X., Fukuda, H., Zhou, D. & Wang, M. (2019). Study on outdoor thermal comfort of the commercial pedestrian block in hot-summer and cold- winter region of southern China-a case study of The Taizhou Old Block. Tourism Management, 75, 186-205.
  • Mei, S. J., Hu, J. T., Liu, D., Zhao, F. Y., Li, Y., Wang, Y. & Wang, H. Q. (2017). Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density. Energy and Buildings, 155, 324-338.
  • Menteş, Y., Yılmaz, S. & Qaid, A. (2024). The cooling effect of different scales of urban parks on land surface temperatures in cold regions. Energy and Buildings, 113954.
  • MGM. (2020). Turkish State Meteorological Service (MGM) . http s://www.mgm.gov.tr/.
  • Morakinyo, T. E., Lai, A., Lau, K. K. L. & Ng, E. (2019). Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry & Urban Greening, 37, 42-55.
  • Mutlu, E., Yılmaz, S., Yılmaz, H. & Ertem Mutlu, B. (2018). Analysis of urban settlement unit by ENVI-met according to different aspects in cold regions. 6th annual international Conference on Architecture and Civil Engineering (ACE 2018), oral presentation, 14-15 May 2018, Singapore.
  • Narimani, N., Karimi, A. & Brown, R. D. (2022). Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecological Informatics, 69, 101671.
  • Oke, T. R. (2002). Boundary layer climates. Routledge.
  • Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge university press.
  • Orme, M., Liddament, M., & Wilson, A. (1998). Numerical data for air infiltration and natural ventilation calculations. Air Infiltration and Ventilation Centre.
  • Palusci, O., Monti, P., Cecere, C., Montazeri, H. & Blocken, B. (2022). Impact of morphological parameters on urban ventilation in compact cities: The case of the Tuscolano-Don Bosco district in Rome. Science of the Total Environment, 807, 150490.
  • Peng, L. L., Jiang, Z., Yang, X., Wang, Q., He, Y. & Chen, S. S. (2020). Energy savings of block-scale facade greening for different urban forms. Applied Energy, 279, 115844.
  • Potchter, O., Cohen, P., Lin, T. P. & Matzarakis, A. (2022). A systematic review advocating a framework and benchmarks for assessing outdoor human thermal perception. Science of the Total Environment, 833, 155128.
  • Qaid A. & Ossen D.R. (2015). Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. International Journal of Biometeorology, 59 (6) : 657-677.
  • Qaid, A., Lamit, H. B., Ossen, D. R. & Shahminan, R. N. R. (2016). Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy and Buildings, 133, 577-595.
  • Sadeghian, G., Tahbaz, M. & Hakimian, P. (2024, January). Urban microclimate analysis: residential block morphology impact on outdoor thermal comfort. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability (Vol. 40, No. XXXX, pp. 1-11). Emerald Publishing Limited.
  • Salameh, M., Abu-Hijleh, B. & Touqan, B. (2024). Impact of courtyard orientation on thermal performance of school buildings' temperature. Urban Climate, 54, 101853.
  • Salata, F., Golasi, I., Petitti, D., de Lieto Vollaro, E., Coppi, M. & de Lieto Vollaro, A. (2017). Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 30, 79-96.
  • Salvati, A. & Kolokotroni, M. (2023). Urban microclimate and climate change impact on the thermal performance and ventilation of multi- family residential buildings. Energy and Buildings, 294, 113224.
  • Salvati, A., Monti, P., Roura, H. C. & Cecere, C. (2019). Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy and Buildings, 185, 162-179.
  • Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482.
  • Song, B. G., Park, K. H. & Jung, S. G. (2014). Validation of ENVI-met model with in situ measurements considering spatial characteristics of land use types. Journal of The Korean Association of Geographic Information Studies, 17(2), 156-172.
  • Song, X., Wang, G., Deng, Q., Wang, S. & Jiao, C. (2023). The Influence of Residential Block Form on Summer Thermal Comfort of Street Canyons in the Warm Temperate Zone of China. Buildings, 13(7), 1627.
  • Sun, C., Lian, W., Liu, L., Dong, Q. & Han, Y. (2022). The impact of street geometry on outdoor thermal comfort within three different urban forms in severe cold region of China. Building and Environment, 222, 109342.
  • Tsoka, S., Tsikaloudaki, A. & Theodosiou, T. (2018). Analyzing the ENVI- met microclimate model’s performance and assessing cool materials and urban vegetation applications-a review. Sustainable Cities and Society. 43:55-76.
  • WAQR. (2020). World Air Quality Report, Region & City PM2.5 Ranking.
  • Watson, I. D. & Johnson, G. T. (2010). Graphical estimation of sky view‐ factors in urban environments. Journal of Climatology, 7(2), 193-197.
  • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309-1313.
  • Xie, X., Sahin, O., Luo, Z. & Yao, R. (2020). Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential. Renewable Energy, 150, 943-956.
  • Yavaş, M. & Yılmaz, S. (2019). Evaluation of urban micro-climate in cold climate cities: the case of urban transformation area in Erzurum. Artium, 7(2), 103-114.
  • Yavaş, M. & Yılmaz, S. (2020). Climate sensitive urban design principles: the case of Erzurum City. Planlama-Planning, 30(2).
  • Yılmaz S., Mutlu E. & Yılmaz H. (2018). Quantification of thermal comfort based on different street orientation in winter months of urban city Dadaşkent. DOİ: 10.17660/ActaHortic.2018.1215.12, EdsG. Pennisi, L. Cremonini, T. Georgiadis, F. Orsini, G.P. Gianquinto, ISBN: 978-94- 62612- 12-9, ISSN: 0567-7572 (print) 2406-6168 (electronic), Acta Horticulturae, 1215: 67-72
  • Yılmaz, H., Yılmaz, S., Yavaş, M., Mutlu, E. & Koç, A. (2016). Climate- sensitive pavement modelling for pedestrian ways. Procedia Engineering, 169, 408-415.
  • Yılmaz, S., Irmak, M. A. & Qaid, A. (2022). Assessing the effects of different urban landscapes and built environment patterns on thermal comfort and air pollution in Erzurum city, Turkey. Building and Environment, 219, 109210.
  • Yılmaz, S., Külekçi, E. A., Ertem Mutlu, B. & Sezen, I. (2021). Analysis of winter thermal comfort conditions: street scenarios using ENVI-met model. Environmental Science and Pollution Research, 28(45), 63837- 63859.
  • Yılmaz, S., Bilge, C. & Irmak, M. (2023). Determining the climate future projection of Erzurum City with the UrbClim model. Journal of Architectural Sciences and Applications, 8(1), 112-122.
  • Yılmaz, S., Mutlu, E. & Yılmaz, H. (2017). Quantification of thermal comfort based on different street orientation in winter months of urban city Dadaşkent. In International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World 1215 (pp. 67- 72).
  • Yılmaz, S., Sezen, I. & Sarı, E. N. (2021a). The relationships between ecological urbanization, green areas, and air pollution in Erzurum/Turkey. Environmental and Ecological Statistics, 28, 733-759.
  • Yin, Q., Cao, Y. & Sun, C. (2021). Research on outdoor thermal comfort of high-density urban center in severe cold area. Building and Environment, 200, 107938.
  • Yücekaya, M., Aklıbaşında, M. & Günaydın, A. S. (2022). Suyun İklimsel Etkisinin ENVI-Met Simülasyonu ile Analizi. Online Journal of Art & Design, 10(4), 301-313.

Analysis of the Impact of Urban Building Blocks Orientation on Outdoor Thermal Comfort in Winter Cities Using ENVI-met

Year 2024, Volume: 9 Issue: 2, 737 - 755, 26.12.2024
https://doi.org/10.30785/mbud.1530027

Abstract

The increase in urbanization, building density in cities, and the excess of hard surfaces exacerbate the urban heat island effect, negatively impacting outdoor thermal comfort. It is anticipated that not only the abundance of structures but also the orientation of building blocks in space affects thermal comfort. In this study, four different orientation scenarios “0°, 45°, 90°, 135°” were analyzed using the ENVI-met 5.6.1 software model. The newly developed settlement area Yıldızkent, located in the development axis of the city center of Erzurum, was chosen as the study area. The study concluded that the street orientation at a 45° angle was the most suitable scenario in terms of thermal comfort for both winter and summer months. In this scenario analysis, a 1.0°C PET improvement for winter months was determined, positively affecting thermal comfort. It was determined that the orientation of building blocks has an impact on thermal comfort.

Thanks

This study is part of the doctoral thesis titled "Evaluation of Different Urban Green Area System Scenarios in Terms of Outdoor Thermal Comfort" (Thesis No: 794478) conducted by Başak Ertem Mutlu at the Department of Landscape Architecture, Institute of Science, Atatürk University. This research was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under Project No: 119O479. The authors extend their special thanks to the Research Universities Support Program (ADEP-YOK) at Ataturk University of Turkey (Grant No: FBA-2024-13536 and Grant No: FBA-2024-14152) and the Turkish State Meteorological Service (MGM) for sharing their data free of charge. The article complies with national and international research and publication ethics.

References

  • Acero, J. A. & Arrizabalaga, J. (2018). Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and Applied Climatology, 131, 455-469.
  • Acero, J. A., Koh, E. J., Ruefenacht, L. A. & Norford, L. K. (2021). Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Climate, 36, 100775.
  • Achour-Younsi, S. & Kharrat, F. (2016). Outdoor thermal comfort: impact of the geometry of an urban street canyon in a Mediterranean subtropical climate–case study Tunis, Tunisia. Procedia-Social and Behavioral Sciences, 216, 689-700.
  • Ali-Toudert, F. & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108.
  • Ali-Toudert, F. & Mayer, H. (2007). Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81(6), 742-754.
  • Anonymous. (2023). https://www.nufusune.com/palandoken-ilce- nufusu-erzurum, (Access Date: 28.01.2023)
  • Battista, G., Carnielo, E. & Vollaro, R. D. L. (2016). Thermal impact of a redeveloped area on localized urban microclimate: A case study in Rome. Energy and Buildings, 133, 446-454.
  • Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H. & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56, 515-535.
  • Bruse, M. (1999). Modelling and strategies for improved urban climates. Biometeorology and Urban Climatology at the Turn of the Millenium, Sydney, 8-12 Novembre 1999, 6p.
  • Bruse, M. & Fleer, H. (1998). Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling and Software. https://doi.org/10.1016/S1364- 8152(98)00042-5
  • Cui, P., Jiang, J., Zhang, J. & Wang, L. (2023). Effect of street design on UHI and energy consumption based on vegetation and street aspect ratio: Taking Harbin as an example. Sustainable Cities and Society, 92, 104484.
  • De Freitas, C. R. & Grigorieva, E. A. (2017). A comparison and appraisal of a comprehensive range of human thermal climate indices. International Journal of Biometeorology, 61, 487-512.
  • De, B. & Mukherjee, M. (2016). Impact of canyon design on thermal comfort ın warm humid cities: A Case of Rajarhat-Newtown Kolkata. India. 4th International Conference on Countermeasures to Urban Heat Island, National University Of Singapore, Singapore
  • Ertem Mutlu, B. & Yılmaz, S. (2024). Determining the effect of different green area ratios on outdoor thermal comfort by Envi-Met analysis: The Example of Erzurum. Adnan Menderes University Faculty of Agriculture Journal of Agricultural Sciences, 21(1), 17-23.
  • Ertem Mutlu, B. (2023). Farklı kentsel yeşil alan sistem senaryolarının dış mekan termal konfor açısından değerlendirilmesi (Doctoral Thesis). Institute of Science, Atatürk University, Erzurum. Access Date (04.08.2024): https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • ENVI-met Software. (2024) https://envi-met.com/, (Access Date; 01.08.2024)
  • Faragallah, R. N. & Ragheb, R. A. (2022). Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met. Ain Shams Engineering Journal, 13(3), 101609.
  • Ghiaus, C., Allard, F., Santamouris, M., Georgakis, C., Roulet, C. A., Germano, M., ... & Roche, L. (2005). Natural ventilation of urban buildings–summary of URBVENT project. In Proceedings of the 1st International Conference on passive and low energy cooling for the built environment: PALENC (pp. 29-33).
  • Guo, T., Zhao, Y., Yang, J., Zhong, Z., Ji, K., Zhong, Z. & Luo, X. (2023). Effects of tree arrangement and leaf area ındex on the thermal comfort of outdoor children’s activity space in hot−humid areas. Buildings, 13(1), 214.
  • He, B. J., Wang, J., Liu, H. & Ulpiani, G. (2021). Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environmental Research, 193, 110584.
  • Huang, C. H., Tsai, H. H. & Chen, H. C. (2020). Influence of weather factors on thermal comfort in subtropical urban environments. Sustainability, 12(5), 2001.
  • IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/
  • Jamali, F. S., Khaledi, S. & Razavian, M. T. (2021). Seasonal impact of urban parks on land surface temperature (LST) in semi-arid city of Tehran. International Journal of Urban Sustainable Development, 1–17. doi:10.1080/19463138.2021.1872083
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorol Z, 15, 259- 263.
  • Köppen, W. & Geiger, R. (1954). Klima der Erde (Climate of the earth). Wall Map 1:16 Mill. Klett-Perthes. Gotha.
  • Li, G., Ren, Z. & Zhan, C. (2020). Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Building and Environment, 169, 106587.
  • Liu, Z., Zheng, S. & Zhao, L. (2018). Evaluation of the ENVI-Met vegetation model of four common tree species in a subtropical hot-humid area. Atmosphere, 9(5), 198.
  • Ma, X., Fukuda, H., Zhou, D. & Wang, M. (2019). Study on outdoor thermal comfort of the commercial pedestrian block in hot-summer and cold- winter region of southern China-a case study of The Taizhou Old Block. Tourism Management, 75, 186-205.
  • Mei, S. J., Hu, J. T., Liu, D., Zhao, F. Y., Li, Y., Wang, Y. & Wang, H. Q. (2017). Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density. Energy and Buildings, 155, 324-338.
  • Menteş, Y., Yılmaz, S. & Qaid, A. (2024). The cooling effect of different scales of urban parks on land surface temperatures in cold regions. Energy and Buildings, 113954.
  • MGM. (2020). Turkish State Meteorological Service (MGM) . http s://www.mgm.gov.tr/.
  • Morakinyo, T. E., Lai, A., Lau, K. K. L. & Ng, E. (2019). Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry & Urban Greening, 37, 42-55.
  • Mutlu, E., Yılmaz, S., Yılmaz, H. & Ertem Mutlu, B. (2018). Analysis of urban settlement unit by ENVI-met according to different aspects in cold regions. 6th annual international Conference on Architecture and Civil Engineering (ACE 2018), oral presentation, 14-15 May 2018, Singapore.
  • Narimani, N., Karimi, A. & Brown, R. D. (2022). Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecological Informatics, 69, 101671.
  • Oke, T. R. (2002). Boundary layer climates. Routledge.
  • Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge university press.
  • Orme, M., Liddament, M., & Wilson, A. (1998). Numerical data for air infiltration and natural ventilation calculations. Air Infiltration and Ventilation Centre.
  • Palusci, O., Monti, P., Cecere, C., Montazeri, H. & Blocken, B. (2022). Impact of morphological parameters on urban ventilation in compact cities: The case of the Tuscolano-Don Bosco district in Rome. Science of the Total Environment, 807, 150490.
  • Peng, L. L., Jiang, Z., Yang, X., Wang, Q., He, Y. & Chen, S. S. (2020). Energy savings of block-scale facade greening for different urban forms. Applied Energy, 279, 115844.
  • Potchter, O., Cohen, P., Lin, T. P. & Matzarakis, A. (2022). A systematic review advocating a framework and benchmarks for assessing outdoor human thermal perception. Science of the Total Environment, 833, 155128.
  • Qaid A. & Ossen D.R. (2015). Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. International Journal of Biometeorology, 59 (6) : 657-677.
  • Qaid, A., Lamit, H. B., Ossen, D. R. & Shahminan, R. N. R. (2016). Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy and Buildings, 133, 577-595.
  • Sadeghian, G., Tahbaz, M. & Hakimian, P. (2024, January). Urban microclimate analysis: residential block morphology impact on outdoor thermal comfort. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability (Vol. 40, No. XXXX, pp. 1-11). Emerald Publishing Limited.
  • Salameh, M., Abu-Hijleh, B. & Touqan, B. (2024). Impact of courtyard orientation on thermal performance of school buildings' temperature. Urban Climate, 54, 101853.
  • Salata, F., Golasi, I., Petitti, D., de Lieto Vollaro, E., Coppi, M. & de Lieto Vollaro, A. (2017). Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 30, 79-96.
  • Salvati, A. & Kolokotroni, M. (2023). Urban microclimate and climate change impact on the thermal performance and ventilation of multi- family residential buildings. Energy and Buildings, 294, 113224.
  • Salvati, A., Monti, P., Roura, H. C. & Cecere, C. (2019). Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy and Buildings, 185, 162-179.
  • Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482.
  • Song, B. G., Park, K. H. & Jung, S. G. (2014). Validation of ENVI-met model with in situ measurements considering spatial characteristics of land use types. Journal of The Korean Association of Geographic Information Studies, 17(2), 156-172.
  • Song, X., Wang, G., Deng, Q., Wang, S. & Jiao, C. (2023). The Influence of Residential Block Form on Summer Thermal Comfort of Street Canyons in the Warm Temperate Zone of China. Buildings, 13(7), 1627.
  • Sun, C., Lian, W., Liu, L., Dong, Q. & Han, Y. (2022). The impact of street geometry on outdoor thermal comfort within three different urban forms in severe cold region of China. Building and Environment, 222, 109342.
  • Tsoka, S., Tsikaloudaki, A. & Theodosiou, T. (2018). Analyzing the ENVI- met microclimate model’s performance and assessing cool materials and urban vegetation applications-a review. Sustainable Cities and Society. 43:55-76.
  • WAQR. (2020). World Air Quality Report, Region & City PM2.5 Ranking.
  • Watson, I. D. & Johnson, G. T. (2010). Graphical estimation of sky view‐ factors in urban environments. Journal of Climatology, 7(2), 193-197.
  • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309-1313.
  • Xie, X., Sahin, O., Luo, Z. & Yao, R. (2020). Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential. Renewable Energy, 150, 943-956.
  • Yavaş, M. & Yılmaz, S. (2019). Evaluation of urban micro-climate in cold climate cities: the case of urban transformation area in Erzurum. Artium, 7(2), 103-114.
  • Yavaş, M. & Yılmaz, S. (2020). Climate sensitive urban design principles: the case of Erzurum City. Planlama-Planning, 30(2).
  • Yılmaz S., Mutlu E. & Yılmaz H. (2018). Quantification of thermal comfort based on different street orientation in winter months of urban city Dadaşkent. DOİ: 10.17660/ActaHortic.2018.1215.12, EdsG. Pennisi, L. Cremonini, T. Georgiadis, F. Orsini, G.P. Gianquinto, ISBN: 978-94- 62612- 12-9, ISSN: 0567-7572 (print) 2406-6168 (electronic), Acta Horticulturae, 1215: 67-72
  • Yılmaz, H., Yılmaz, S., Yavaş, M., Mutlu, E. & Koç, A. (2016). Climate- sensitive pavement modelling for pedestrian ways. Procedia Engineering, 169, 408-415.
  • Yılmaz, S., Irmak, M. A. & Qaid, A. (2022). Assessing the effects of different urban landscapes and built environment patterns on thermal comfort and air pollution in Erzurum city, Turkey. Building and Environment, 219, 109210.
  • Yılmaz, S., Külekçi, E. A., Ertem Mutlu, B. & Sezen, I. (2021). Analysis of winter thermal comfort conditions: street scenarios using ENVI-met model. Environmental Science and Pollution Research, 28(45), 63837- 63859.
  • Yılmaz, S., Bilge, C. & Irmak, M. (2023). Determining the climate future projection of Erzurum City with the UrbClim model. Journal of Architectural Sciences and Applications, 8(1), 112-122.
  • Yılmaz, S., Mutlu, E. & Yılmaz, H. (2017). Quantification of thermal comfort based on different street orientation in winter months of urban city Dadaşkent. In International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World 1215 (pp. 67- 72).
  • Yılmaz, S., Sezen, I. & Sarı, E. N. (2021a). The relationships between ecological urbanization, green areas, and air pollution in Erzurum/Turkey. Environmental and Ecological Statistics, 28, 733-759.
  • Yin, Q., Cao, Y. & Sun, C. (2021). Research on outdoor thermal comfort of high-density urban center in severe cold area. Building and Environment, 200, 107938.
  • Yücekaya, M., Aklıbaşında, M. & Günaydın, A. S. (2022). Suyun İklimsel Etkisinin ENVI-Met Simülasyonu ile Analizi. Online Journal of Art & Design, 10(4), 301-313.
There are 67 citations in total.

Details

Primary Language English
Subjects Landscape Architecture (Other)
Journal Section Research Articles
Authors

Başak Ertem Mutlu 0000-0002-0394-4950

Sevgi Yılmaz 0000-0001-7668-5788

Publication Date December 26, 2024
Submission Date August 7, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Ertem Mutlu, B., & Yılmaz, S. (2024). Analysis of the Impact of Urban Building Blocks Orientation on Outdoor Thermal Comfort in Winter Cities Using ENVI-met. Journal of Architectural Sciences and Applications, 9(2), 737-755. https://doi.org/10.30785/mbud.1530027