Comparative Investigation of Outdoor Thermal Comfort in Different Local Climate Zones (LCZ): The Case of Konya
Year 2025,
Volume: 10 Issue: 1, 354 - 376, 28.07.2025
Hande Büşra Geyikli
,
Fatih Canan
Abstract
Outdoor thermal comfort is the condition where individuals feel neither too hot nor too cold according to environmental conditions. This comfort is critical for people to be able to continue their physical activities and social interactions in open spaces. Research shows that increasing green spaces, tree cover and urban morphology can increase thermal comfort by lowering temperatures. In this study, it was aimed to determine the effect of outdoor thermal comfort in 6 different local climate zones (LCZ) in Konya city, which has a BSk (cold-semi-arid) climate, in summer and winter. In order to determine the thermal comfort in the outdoor environment, PET (Physiological equivalent temperature) index was found by using ENVI-met software. Summer and winter season data were used for the analyzes. As a result of the study, it was determined which local climate zones are thermally comfortable for summer and winter seasons for cities with BSk climate.
References
-
Abdallah, A. S. H. & Mahmoud, R. M. A. (2022). Urban morphology as an adaptation strategy to improve outdoor thermal comfort in urban residential community of new assiut city, Egypt, Sustainable Cities and Society, 78, 103648.
-
Ahmadi, S., Yeganeh, M., Motie, M. B. & Gilandoust, A. (2022). The role of neighborhood morphology in enhancing
thermal comfort and resident’s satisfaction. Energy Reports, 8, 9046-9056.
-
Alkhoudiri, A., Navarro, I., Fort, J. M. & Alumran, S. (2022). Parametric comparative analysis of outdoor thermal
comfort in a desert climate: A case study of single-family houses in Riyadh. Urban Climate, 46, 101300. Access
Address (22.04.2024): https://www.sciencedirect.com/science/article/pii/S2212095522002188
-
ASHRAE. (2004). ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE
Standard. Atlanta.
-
Banerjee, S., Middel, A. & Chattopadhyay, S. (2020). Outdoor thermal comfort in various microentrepreneurial
settings in hot humid tropical Kolkata: Human biometeorological assessment of objective and subjective
parameters. Science of the Total Environment, 721, 137741. Access Address (02.03.2024):
https://www.sciencedirect.com/science/article/pii/S0048969720312523
-
Bassani, F., Garbero, V., Poggi, D., Ridolfi, L., von Hardenberg, J. & Milelli, M. (2022). An innovative approach to
select urban-rural sites for Urban Heat Island analysis: the case of Turin (Italy). Urban Climate, 42, 101099.
Access Address (18.03.2024): https://www.sciencedirect.com/science/article/pii/S2212095522000177
-
Blażejczyk, K. (2011). Assessment of regional bioclimatic contrasts in Poland. Miscellanea Geographica. Regional
Studies on Development, 15, 79-91. Access Address (02.04.2024): https://sciendo.com/article/10.2478/v10288-
012-0004-7
-
Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H. & Tinz, B. (2012). Comparison of UTCI to selected thermal
indices. International Journal of Biometeorology, 56 (3), 515-535. Access Address (05.04.2024):
https://link.springer.com/article/10.1007/s00484-011-0453-2
-
Canan, F. & Geyikli, H. B. (2022). Dış ortam termal konfor koşullarının belirlenmesinde özgün veri kullanımının
önemi. 8th International Mardin Artuklu Scientific Researches Conference. Mardin, Türkiye, 640-654.
-
Canan, F., Golasi, I., Falasca, S. & Salata, F. (2020). Outdoor thermal perception and comfort conditions in the
Köppen-Geiger climate category BSk. one-year field survey and measurement campaign in Konya, Turkey.
Science of the Total Environment, 738, 140295. Access Address (02.05.2024):
https://www.sciencedirect.com/science/article/pii/S0048969720338171
-
Cetin, M. (2020). Climate comfort depending on different altitudes and land use in the urban areas in
Kahramanmaras City. Air Quality, Atmosphere & Health, 13(8), 991-999.
-
Chow, W. T. L. & Brazel, A. J. (2012). Assessing xeriscaping as a sustainable heat island mitigation approach for a
desert city. Building and Environment, 47, 170-181. Access Address (24.03.2024):
https://www.sciencedirect.com/science/article/pii/S0360132311002411
-
Cui, P., Jiang, J., Zhang, J. & Wang, L. (2023) Effect of street design on UHI and energy consumption based on
vegetation and street aspect ratio: Taking Harbin as an example, Sustainable Cities and Society, 92, 104484.
-
Darbani, E. S., Rafieian, M., Parapari, D. M. & Guldmann, J.-M. (2023). Urban design strategies for summer and
winter outdoor thermal comfort in arid regions: The case of historical, contemporary and modern urban areas
in Mashhad, Iran. Sustainable Cities and Society, 89, 104339.
-
Das, M., Das, A. & Mandal, S. (2020). Outdoor thermal comfort in different settings of a tropical planning region: a
study on Sriniketan-Santiniketan Planning Area (SSPA), Eastern India. Sustainable Cities and Society, 63, 102433.
Access Address (20.04.2024): https://www.sciencedirect.com/science/article/pii/S2210670720306545
-
De Abreu-Harbich, L. V., Labaki, L. C., & Matzarakis, A. (2015). Effect of tree planting design and tree species on
human thermal comfort in the tropics. Landscape and Urban Planning, 138, 99-109.
-
Deevi, B. & Chundeli, F. A. (2020). Quantitative outdoor thermal comfort assessment of street: A case in a warm
and humid climate of India, Urban Climate, 34, 100718.
-
Deng, J.Y. & Wong, N. H. (2020). Impact of urban canyon geometries on outdoor thermal comfort in central
business districts. Sustainable Cities and Society, 53, 101966. Access Address (06.03.2024):
https://www.sciencedirect.com/science/article/pii/S2210670719323480
-
Dian, C., Pongrácz, R., Dezső, Z. & Bartholy, J. (2020). Annual and monthly analysis of surface urban heat island
intensity with respect to the local climate zones in Budapest. Urban Climate, 31, 100573. Access Address
(25.04.2024): https://www.sciencedirect.com/science/article/pii/S2212095518300658
-
Emekci, Ş. (2021). The building environment process compatible with human and nature in the quest for
environment friendly architecture. Journal of Architectural Sciences and Applications (JASA), 6(2), 538-554.
-
Elnabawi, M. H., Hamza, N. & Dudek, S. (2013). Use and evaluation of the ENVI-met model for two different urban
forms in Cairo, Egypt: measurements and model simulations, 13th Conference of international building
performance simulation association, Chambéry, France.
-
Epstein, Y. & Moran, D. S. (2006). Thermal comfort and the heat stress indices. Industrial Health, 44 (3), 388-398.
Access Address (22.03.2024): https://pubmed.ncbi.nlm.nih.gov/16922182/
-
Geyikli, H.B. (2022). Hande Büşra Geyikli Photo Archive.
-
Givoni, B., Noguchi, M., Saaroni, H., Pochter, O., Yaacov, Y., Feller, N. & Becker, S. (2003). Outdoor comfort research
issues. Energy and Buildings, 35 (1), 77-86. Access Address (02.04.2024):
https://www.sciencedirect.com/science/article/pii/S0378778802000828
-
Hakim, A. A., Petrovitch, H., Burchfiel, C. M., Ross, G. W., Rodriguez, B. L., White, L. R., Yano, K., Curb, J. D. & Abbott, R. D.
(1998). Effects of walking on mortality among nonsmoking retired men. New England Journal of Medicine, 338
(2), 94-99.
-
Hass-Klau, C. (1993). Impact of pedestrianization and traffic calming on retailing. Transport Policy, 1 (1), 21-31.
Access Address (25.02.2024): https://trid.trb.org/view/408042
-
He, X., Gao, W. & Wang, R. (2021). Impact of urban morphology on the microclimate around elementary schools:
A case study from Japan. Building and Environment, 206, 108383.
-
He, X., Gao, W., Wang, R. & Yan, D. (2023). Study on outdoor thermal comfort of factory areas during winter in hot
summer and cold winter zone of China. Building and Environment, 228, 109883. Access Address (06.03.2024):
https://www.sciencedirect.com/science/article/pii/S0360132322011131
-
Höppe, P. (1997). Aspects of human biometerology in past, present and future. International journal of
biometeorology, 40 (1), 19-23. Access Address (28.03.2024): https://pubmed.ncbi.nlm.nih.gov/9112815/
-
Johansson, E., Thorsson, S., Emmanuel, R. & Krüger, E. (2014). Instruments and methods in outdoor thermal
comfort studies–The need for standardization. Urban Climate, 10, 346-366. Access Address (13.02.2024):
https://www.sciencedirect.com/science/article/pii/S221209551300062X
-
Karimimoshaver, M. & Shahrak, M. S. (2022). The effect of height and orientation of buildings on thermal
comfort. Sustainable Cities and Society, 79, 103720.
-
Khalili, S., Fayaz, R. & Zolfaghari, S. A. (2022). Analyzing outdoor thermal comfort conditions in a university
campus in hot-arid climate: A case study in Birjand, Iran, Urban Climate, 43, 101128.
-
Kim, Y., Yu, S., Li, D., Gatson, S. N. & Brown, R. D. (2022). Linking landscape spatial heterogeneity to urban heat
island and outdoor human thermal comfort in Tokyo: Application of the outdoor thermal comfort index,
Sustainable Cities and Society, 87, 104262.
-
Knez, I. & Thorsson, S. (2008). Thermal, emotional and perceptual evaluations of a park: Cross-cultural and
environmental attitude comparisons. Building and Environment, 43 (9), 1483-1490. Access Address (04.03.2024):
https://www.sciencedirect.com/science/article/pii/S0360132307001606
-
Köppen, W., Volken, E. & Brönnimann, S. (2011). The thermal zones of the earth according to the duration of hot,
moderate and cold periods and to the impact of heat on the organic world (Translated from: Die Wärmezonen
der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die
organische Welt betrachtet, Meteorol Z 1884, 1, 215-226). Meteorologische Zeitschrift, 20 (3), 351-360. Access
Address (02.03.2024): https://koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1884_2.pdf
-
Lau, K. K. L., Chung, S. C. & Ren, C. (2019). Outdoor thermal comfort in different urban settings of sub-tropical
high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment,
154, 227-238. Access Address (18.03.2024):
https://www.sciencedirect.com/science/article/pii/S0360132319301593
-
Lee, H. & Mayer, H. (2016) Validation of the mean radiant temperature simulated by the RayMan software in
urban environments. International journal of biometeorology, 60, 1775-1785. Access Address (07.04.2024):
https://link.springer.com/article/10.1007/s00484-016-1166-3
-
Lin, Y., Jin, Y. & Jin, H. (2022). Effects of different exercise types on outdoor thermal comfort in a severe cold city,
Journal of Thermal Biology, 109, 103330.
-
Lin, T. P., Matzarakis, A., & Hwang, R. L. (2010). Shading effect on long-term outdoor thermal comfort. Building and
environment, 45(1), 213-221.
-
Lindberg, F. & Grimmond, C. S. B. (2011). Nature of vegetation and building morphology characteristics across a
city: influence on shadow patterns and mean radiant temperatures in London. Urban Ecosystems, 14 (4), 617-
634. Access Address (21.03.2024): https://link.springer.com/article/10.1007/s11252-011-0184-5
-
Liu, H., Lim, J. Y., Thet, B. W. H., Lai, P.Y. & Koh, W. S. (2022). Evaluating the impact of tree morphologies and
planting densities on outdoor thermal comfort in tropical residential precincts in Singapore, Building and
Environment, 221, 109268.
-
Lyu, T., Buccolieri, R. & Gao, Z. (2019). A numerical study on the correlation between sky view factor and summer
microclimate of local climate zones. Atmosphere, 10 (8), 438. Access Address (04.02.2024):
https://www.mdpi.com/2073-4433/10/8/438
-
Ma, X., Song, L., Hong, B., Li, Y. & Li, Y. (2023). Relationships between EEG and thermal comfort of elderly adults in outdoor open spaces. Building and Environment, 110212. Access Address (06.03.2024): https://www.sciencedirect.com/science/article/pii/S0360132323002391
-
Mahmoud, R. M. A. & Abdallah, A. S. H. (2022). Assessment of outdoor shading strategies to improve outdoor
thermal comfort in school courtyards in hot and arid climates. Sustainable Cities and Society, 86, 104147.
Access Address (06.03.2024): https://www.sciencedirect.com/science/article/pii/S2210670722004607
-
Matzarakis, A. & Mayer, H. (1996). Another kind of environmental stress: thermal stress. WHO Newsletter, 18
(January 1996), 7-10. Access Address (02.05.2024):
https://www.researchgate.net/publication/233759000_Another_kind_of_environmental_stress_Thermal_stre
ss
-
Matzarakis, A., Rutz, F. & Mayer, H. (2006). Modelling the thermal bioclimate in urban areas with the RayMan
Model. International Conference on Passive and Low Energy Architecture, 449-453. Access Address (18.03.2024):
https://www.researchgate.net/publication/237253361_Modelling_the_thermal_bioclimate_in_urban_areas_
with_the_RayMan_Model
-
McGregor, G. R. (2012). Human biometeorology. Progress in Physical Geography, 36 (1), 93-109.
-
Mirzabeigi, S. & Razkenari, M. (2022). Design optimization of urban typologies: A framework for evaluating
building energy performance and outdoor thermal comfort. Sustainable Cities and Society, 76, 103515. Access
Address (06.03.2024): https://www.sciencedirect.com/science/article/pii/S2210670721007812
-
Mohammadzadeh, N., Karimi, A. & Brown, R. D. (2023) The influence of outdoor thermal comfort on acoustic
comfort of urban parks based on plant communities, Building and Environment, 228, 109884.
-
Nasrollahi, N., Namazi, Y. & Taleghani, M. (2021). The effect of urban shading and canyon geometry on outdoor
thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustainable Cities and Society, 65, 102638. Access
Address (06.03.2024): https://www.sciencedirect.com/science/article/pii/S2210670720308544
-
Nikolopoulou, M. & Lykoudis, S. (2006). Thermal comfort in outdoor urban spaces: analysis across different
European countries. Building and Environment, 41 (11), 1455-1470. Access Address (03.02.2024):
https://www.sciencedirect.com/science/article/pii/S0360132305002039
-
Nikolopoulou, M., Baker, N. & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: understanding the
human parameter. Solar Energy, 70 (3), 227-235. Access Address (12.05.2024):
https://www.sciencedirect.com/science/article/pii/S0038092X00000931
-
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological
Society, 108 (455), 1-24.
-
Ozkeresteci, I., Crewe, K., Brazel, A. J. & Bruse, M. (2003). Use and evaluation of the ENVI-met model for
environmental design and planning: an experiment on linear parks. Proceedings of the 21st International
Cartographic Conference (ICC) (p. 10-16). Durban, South Africa.
-
Potchter, O., Cohen, P., Lin, T.P. & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A
comprehensive review of approaches, methods and quantification. Science of the Total Environment, 631, 390-
406. Access Address (05.02.2024): https://www.sciencedirect.com/science/article/pii/S0048969718306776
-
Roth, M. & Lim, V. H. (2017). Evaluation of canopy-layer air and mean radiant temperature simulations by a
microclimate model over a tropical residential neighbourhood. Building and Environment, 112, 177-189. Access
Address (23.03.2024): https://www.sciencedirect.com/science/article/pii/S0360132316304516
-
Salata, F., Golasi, I., de Lieto Vollaro, R. & de Lieto Vollaro, A. (2016). Outdoor thermal comfort in the
Mediterranean area. A transversal study in Rome, Italy. Building and Environment, 96, 46-61. Access Address
(02.03.2024): https://www.sciencedirect.com/science/article/pii/S0360132315301852
-
Salman, A. M. & Saleem, Y. M. (2021). The effect of Urban Heat Island mitigation strategies on outdoor human
thermal comfort in the city of Baghdad. Frontiers of Architectural Research, 10 (4), 838-856. Access Address
(06.03.2024): https://www.sciencedirect.com/science/article/pii/S2095263521000431
-
Samaali, M., Courault, D., Bruse, M., Olioso, A. & Occelli, R. (2007). Analysis of a 3D boundary layer model at local
scale: Validation on soybean surface radiative measurements. Atmospheric Research, 85 (2), 183-198. Access
Address (21.03.2024): https://www.sciencedirect.com/science/article/pii/S0169809506002924
-
Singh, M. & Laefer, D. F. (2015). Recent trends and remaining limitations in urban microclimate models. Open
Urban Studies Demography Journal, 1 (1). Access Address (22.03.2024):
https://www.researchgate.net/publication/273528676_Recent_Trends_and_Remaining_Limitations_in_Urba
n_Microclimate_Models
-
Spagnolo, J. & de Dear, R. (2003). A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and Environment, 38 (5), 721-738. Access Address (05.05.2024): https://www.sciencedirect.com/science/article/pii/S0360132302002093
-
Stewart, I. D. & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American
Meteorological Society, 93 (12), 1879-1900. Access Address (05.02.2024):
https://www.researchgate.net/publication/258607564_Local_Climate_Zones_for_Urban_Temperature_Studi
es
-
Stewart, I. D. (2011). Redefining the urban heat island. University of British Columbia Vancouver. Access Address
(25.02.2024): https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0072360
-
Stone Jr, B. & Rodgers, M. O. (2001). Urban form and thermal efficiency: how the design of cities influences the
urban heat island effect, American Planning Association. Journal of the American Planning Association, 67 (2),
186.
-
Streutker, D. R. (2003). A study of the urban heat island of Houston, Texas, Rice University.
-
Sun, R., Liu, J., Lai, D. & Liu, W. (2023). Building form and outdoor thermal comfort: Inverse design the
microclimate of outdoor space for a kindergarten, Energy and Buildings, 284, 112824.
-
Taleb, D. & Abu-Hijleh, B. (2013). Urban heat islands: Potential effect of organic and structured urban
configurations on temperature variations in Dubai, UAE. Renewable Energy, 50, 747-762.
-
Theophilou, M. K. & Serghides, D. (2015). Estimating the characteristics of the Urban Heat Island Effect in Nicosia,
Cyprus, using multiyear urban and rural climatic data and analysis, Energy Buildings, 108, 137-144.
-
Zhou, Z. & Dong, L. (2023). Experimental investigation of the effect of surgical masks on outdoor thermal comfort
in Xiamen, China, Building and Environment, 229, 109893.
Farklı Yerel İklim Bölgelerinde (LCZ) Dış Mekan Termal Konforunun Karşılaştırılmalı Olarak İncelenmesi: Konya Örneği
Year 2025,
Volume: 10 Issue: 1, 354 - 376, 28.07.2025
Hande Büşra Geyikli
,
Fatih Canan
Abstract
Dış ortamda termal konfor, bireylerin çevresel koşullara göre ne çok sıcak ne de çok soğuk hissetmeleri durumudur. Bu konfor, insanların açık alanlarda fiziksel aktivitelerini sürdürebilmeleri, sosyal etkileşimde bulunabilmeleri açısından kritik öneme sahiptir. Araştırmalar, yeşil alanların, ağaç örtüsünün artırılmasının ve kentsel morfolojinin sıcaklıkları düşürerek termal konforu artırabileceğini göstermektedir. Çalışmada, BSk (soğuk-yarı kurak) iklimine sahip Konya kentinde 6 farklı yerel iklim bölgesinde (LCZ) yaz ve kış aylarında dış ortamda termal konforun etkisinin tespit edilmesi amaçlanmıştır. Dış ortamda termal konforun tespit edilebilmesi için ENVI-met yazılımından yararlanılarak PET (Fizyolojik eşdeğer sıcaklığı) indisi bulunmuştur. Yapılan analizler için yaz ve kış mevsim verileri kullanılmıştır. Çalışmanın sonucunda BSk iklimine sahip kentler için hangi yerel iklim bölgelerinin yaz ve kış mevsimi için termal açıdan konforlu olduğu tespit edilmiştir.
References
-
Abdallah, A. S. H. & Mahmoud, R. M. A. (2022). Urban morphology as an adaptation strategy to improve outdoor thermal comfort in urban residential community of new assiut city, Egypt, Sustainable Cities and Society, 78, 103648.
-
Ahmadi, S., Yeganeh, M., Motie, M. B. & Gilandoust, A. (2022). The role of neighborhood morphology in enhancing
thermal comfort and resident’s satisfaction. Energy Reports, 8, 9046-9056.
-
Alkhoudiri, A., Navarro, I., Fort, J. M. & Alumran, S. (2022). Parametric comparative analysis of outdoor thermal
comfort in a desert climate: A case study of single-family houses in Riyadh. Urban Climate, 46, 101300. Access
Address (22.04.2024): https://www.sciencedirect.com/science/article/pii/S2212095522002188
-
ASHRAE. (2004). ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE
Standard. Atlanta.
-
Banerjee, S., Middel, A. & Chattopadhyay, S. (2020). Outdoor thermal comfort in various microentrepreneurial
settings in hot humid tropical Kolkata: Human biometeorological assessment of objective and subjective
parameters. Science of the Total Environment, 721, 137741. Access Address (02.03.2024):
https://www.sciencedirect.com/science/article/pii/S0048969720312523
-
Bassani, F., Garbero, V., Poggi, D., Ridolfi, L., von Hardenberg, J. & Milelli, M. (2022). An innovative approach to
select urban-rural sites for Urban Heat Island analysis: the case of Turin (Italy). Urban Climate, 42, 101099.
Access Address (18.03.2024): https://www.sciencedirect.com/science/article/pii/S2212095522000177
-
Blażejczyk, K. (2011). Assessment of regional bioclimatic contrasts in Poland. Miscellanea Geographica. Regional
Studies on Development, 15, 79-91. Access Address (02.04.2024): https://sciendo.com/article/10.2478/v10288-
012-0004-7
-
Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H. & Tinz, B. (2012). Comparison of UTCI to selected thermal
indices. International Journal of Biometeorology, 56 (3), 515-535. Access Address (05.04.2024):
https://link.springer.com/article/10.1007/s00484-011-0453-2
-
Canan, F. & Geyikli, H. B. (2022). Dış ortam termal konfor koşullarının belirlenmesinde özgün veri kullanımının
önemi. 8th International Mardin Artuklu Scientific Researches Conference. Mardin, Türkiye, 640-654.
-
Canan, F., Golasi, I., Falasca, S. & Salata, F. (2020). Outdoor thermal perception and comfort conditions in the
Köppen-Geiger climate category BSk. one-year field survey and measurement campaign in Konya, Turkey.
Science of the Total Environment, 738, 140295. Access Address (02.05.2024):
https://www.sciencedirect.com/science/article/pii/S0048969720338171
-
Cetin, M. (2020). Climate comfort depending on different altitudes and land use in the urban areas in
Kahramanmaras City. Air Quality, Atmosphere & Health, 13(8), 991-999.
-
Chow, W. T. L. & Brazel, A. J. (2012). Assessing xeriscaping as a sustainable heat island mitigation approach for a
desert city. Building and Environment, 47, 170-181. Access Address (24.03.2024):
https://www.sciencedirect.com/science/article/pii/S0360132311002411
-
Cui, P., Jiang, J., Zhang, J. & Wang, L. (2023) Effect of street design on UHI and energy consumption based on
vegetation and street aspect ratio: Taking Harbin as an example, Sustainable Cities and Society, 92, 104484.
-
Darbani, E. S., Rafieian, M., Parapari, D. M. & Guldmann, J.-M. (2023). Urban design strategies for summer and
winter outdoor thermal comfort in arid regions: The case of historical, contemporary and modern urban areas
in Mashhad, Iran. Sustainable Cities and Society, 89, 104339.
-
Das, M., Das, A. & Mandal, S. (2020). Outdoor thermal comfort in different settings of a tropical planning region: a
study on Sriniketan-Santiniketan Planning Area (SSPA), Eastern India. Sustainable Cities and Society, 63, 102433.
Access Address (20.04.2024): https://www.sciencedirect.com/science/article/pii/S2210670720306545
-
De Abreu-Harbich, L. V., Labaki, L. C., & Matzarakis, A. (2015). Effect of tree planting design and tree species on
human thermal comfort in the tropics. Landscape and Urban Planning, 138, 99-109.
-
Deevi, B. & Chundeli, F. A. (2020). Quantitative outdoor thermal comfort assessment of street: A case in a warm
and humid climate of India, Urban Climate, 34, 100718.
-
Deng, J.Y. & Wong, N. H. (2020). Impact of urban canyon geometries on outdoor thermal comfort in central
business districts. Sustainable Cities and Society, 53, 101966. Access Address (06.03.2024):
https://www.sciencedirect.com/science/article/pii/S2210670719323480
-
Dian, C., Pongrácz, R., Dezső, Z. & Bartholy, J. (2020). Annual and monthly analysis of surface urban heat island
intensity with respect to the local climate zones in Budapest. Urban Climate, 31, 100573. Access Address
(25.04.2024): https://www.sciencedirect.com/science/article/pii/S2212095518300658
-
Emekci, Ş. (2021). The building environment process compatible with human and nature in the quest for
environment friendly architecture. Journal of Architectural Sciences and Applications (JASA), 6(2), 538-554.
-
Elnabawi, M. H., Hamza, N. & Dudek, S. (2013). Use and evaluation of the ENVI-met model for two different urban
forms in Cairo, Egypt: measurements and model simulations, 13th Conference of international building
performance simulation association, Chambéry, France.
-
Epstein, Y. & Moran, D. S. (2006). Thermal comfort and the heat stress indices. Industrial Health, 44 (3), 388-398.
Access Address (22.03.2024): https://pubmed.ncbi.nlm.nih.gov/16922182/
-
Geyikli, H.B. (2022). Hande Büşra Geyikli Photo Archive.
-
Givoni, B., Noguchi, M., Saaroni, H., Pochter, O., Yaacov, Y., Feller, N. & Becker, S. (2003). Outdoor comfort research
issues. Energy and Buildings, 35 (1), 77-86. Access Address (02.04.2024):
https://www.sciencedirect.com/science/article/pii/S0378778802000828
-
Hakim, A. A., Petrovitch, H., Burchfiel, C. M., Ross, G. W., Rodriguez, B. L., White, L. R., Yano, K., Curb, J. D. & Abbott, R. D.
(1998). Effects of walking on mortality among nonsmoking retired men. New England Journal of Medicine, 338
(2), 94-99.
-
Hass-Klau, C. (1993). Impact of pedestrianization and traffic calming on retailing. Transport Policy, 1 (1), 21-31.
Access Address (25.02.2024): https://trid.trb.org/view/408042
-
He, X., Gao, W. & Wang, R. (2021). Impact of urban morphology on the microclimate around elementary schools:
A case study from Japan. Building and Environment, 206, 108383.
-
He, X., Gao, W., Wang, R. & Yan, D. (2023). Study on outdoor thermal comfort of factory areas during winter in hot
summer and cold winter zone of China. Building and Environment, 228, 109883. Access Address (06.03.2024):
https://www.sciencedirect.com/science/article/pii/S0360132322011131
-
Höppe, P. (1997). Aspects of human biometerology in past, present and future. International journal of
biometeorology, 40 (1), 19-23. Access Address (28.03.2024): https://pubmed.ncbi.nlm.nih.gov/9112815/
-
Johansson, E., Thorsson, S., Emmanuel, R. & Krüger, E. (2014). Instruments and methods in outdoor thermal
comfort studies–The need for standardization. Urban Climate, 10, 346-366. Access Address (13.02.2024):
https://www.sciencedirect.com/science/article/pii/S221209551300062X
-
Karimimoshaver, M. & Shahrak, M. S. (2022). The effect of height and orientation of buildings on thermal
comfort. Sustainable Cities and Society, 79, 103720.
-
Khalili, S., Fayaz, R. & Zolfaghari, S. A. (2022). Analyzing outdoor thermal comfort conditions in a university
campus in hot-arid climate: A case study in Birjand, Iran, Urban Climate, 43, 101128.
-
Kim, Y., Yu, S., Li, D., Gatson, S. N. & Brown, R. D. (2022). Linking landscape spatial heterogeneity to urban heat
island and outdoor human thermal comfort in Tokyo: Application of the outdoor thermal comfort index,
Sustainable Cities and Society, 87, 104262.
-
Knez, I. & Thorsson, S. (2008). Thermal, emotional and perceptual evaluations of a park: Cross-cultural and
environmental attitude comparisons. Building and Environment, 43 (9), 1483-1490. Access Address (04.03.2024):
https://www.sciencedirect.com/science/article/pii/S0360132307001606
-
Köppen, W., Volken, E. & Brönnimann, S. (2011). The thermal zones of the earth according to the duration of hot,
moderate and cold periods and to the impact of heat on the organic world (Translated from: Die Wärmezonen
der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die
organische Welt betrachtet, Meteorol Z 1884, 1, 215-226). Meteorologische Zeitschrift, 20 (3), 351-360. Access
Address (02.03.2024): https://koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1884_2.pdf
-
Lau, K. K. L., Chung, S. C. & Ren, C. (2019). Outdoor thermal comfort in different urban settings of sub-tropical
high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment,
154, 227-238. Access Address (18.03.2024):
https://www.sciencedirect.com/science/article/pii/S0360132319301593
-
Lee, H. & Mayer, H. (2016) Validation of the mean radiant temperature simulated by the RayMan software in
urban environments. International journal of biometeorology, 60, 1775-1785. Access Address (07.04.2024):
https://link.springer.com/article/10.1007/s00484-016-1166-3
-
Lin, Y., Jin, Y. & Jin, H. (2022). Effects of different exercise types on outdoor thermal comfort in a severe cold city,
Journal of Thermal Biology, 109, 103330.
-
Lin, T. P., Matzarakis, A., & Hwang, R. L. (2010). Shading effect on long-term outdoor thermal comfort. Building and
environment, 45(1), 213-221.
-
Lindberg, F. & Grimmond, C. S. B. (2011). Nature of vegetation and building morphology characteristics across a
city: influence on shadow patterns and mean radiant temperatures in London. Urban Ecosystems, 14 (4), 617-
634. Access Address (21.03.2024): https://link.springer.com/article/10.1007/s11252-011-0184-5
-
Liu, H., Lim, J. Y., Thet, B. W. H., Lai, P.Y. & Koh, W. S. (2022). Evaluating the impact of tree morphologies and
planting densities on outdoor thermal comfort in tropical residential precincts in Singapore, Building and
Environment, 221, 109268.
-
Lyu, T., Buccolieri, R. & Gao, Z. (2019). A numerical study on the correlation between sky view factor and summer
microclimate of local climate zones. Atmosphere, 10 (8), 438. Access Address (04.02.2024):
https://www.mdpi.com/2073-4433/10/8/438
-
Ma, X., Song, L., Hong, B., Li, Y. & Li, Y. (2023). Relationships between EEG and thermal comfort of elderly adults in outdoor open spaces. Building and Environment, 110212. Access Address (06.03.2024): https://www.sciencedirect.com/science/article/pii/S0360132323002391
-
Mahmoud, R. M. A. & Abdallah, A. S. H. (2022). Assessment of outdoor shading strategies to improve outdoor
thermal comfort in school courtyards in hot and arid climates. Sustainable Cities and Society, 86, 104147.
Access Address (06.03.2024): https://www.sciencedirect.com/science/article/pii/S2210670722004607
-
Matzarakis, A. & Mayer, H. (1996). Another kind of environmental stress: thermal stress. WHO Newsletter, 18
(January 1996), 7-10. Access Address (02.05.2024):
https://www.researchgate.net/publication/233759000_Another_kind_of_environmental_stress_Thermal_stre
ss
-
Matzarakis, A., Rutz, F. & Mayer, H. (2006). Modelling the thermal bioclimate in urban areas with the RayMan
Model. International Conference on Passive and Low Energy Architecture, 449-453. Access Address (18.03.2024):
https://www.researchgate.net/publication/237253361_Modelling_the_thermal_bioclimate_in_urban_areas_
with_the_RayMan_Model
-
McGregor, G. R. (2012). Human biometeorology. Progress in Physical Geography, 36 (1), 93-109.
-
Mirzabeigi, S. & Razkenari, M. (2022). Design optimization of urban typologies: A framework for evaluating
building energy performance and outdoor thermal comfort. Sustainable Cities and Society, 76, 103515. Access
Address (06.03.2024): https://www.sciencedirect.com/science/article/pii/S2210670721007812
-
Mohammadzadeh, N., Karimi, A. & Brown, R. D. (2023) The influence of outdoor thermal comfort on acoustic
comfort of urban parks based on plant communities, Building and Environment, 228, 109884.
-
Nasrollahi, N., Namazi, Y. & Taleghani, M. (2021). The effect of urban shading and canyon geometry on outdoor
thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustainable Cities and Society, 65, 102638. Access
Address (06.03.2024): https://www.sciencedirect.com/science/article/pii/S2210670720308544
-
Nikolopoulou, M. & Lykoudis, S. (2006). Thermal comfort in outdoor urban spaces: analysis across different
European countries. Building and Environment, 41 (11), 1455-1470. Access Address (03.02.2024):
https://www.sciencedirect.com/science/article/pii/S0360132305002039
-
Nikolopoulou, M., Baker, N. & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: understanding the
human parameter. Solar Energy, 70 (3), 227-235. Access Address (12.05.2024):
https://www.sciencedirect.com/science/article/pii/S0038092X00000931
-
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological
Society, 108 (455), 1-24.
-
Ozkeresteci, I., Crewe, K., Brazel, A. J. & Bruse, M. (2003). Use and evaluation of the ENVI-met model for
environmental design and planning: an experiment on linear parks. Proceedings of the 21st International
Cartographic Conference (ICC) (p. 10-16). Durban, South Africa.
-
Potchter, O., Cohen, P., Lin, T.P. & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A
comprehensive review of approaches, methods and quantification. Science of the Total Environment, 631, 390-
406. Access Address (05.02.2024): https://www.sciencedirect.com/science/article/pii/S0048969718306776
-
Roth, M. & Lim, V. H. (2017). Evaluation of canopy-layer air and mean radiant temperature simulations by a
microclimate model over a tropical residential neighbourhood. Building and Environment, 112, 177-189. Access
Address (23.03.2024): https://www.sciencedirect.com/science/article/pii/S0360132316304516
-
Salata, F., Golasi, I., de Lieto Vollaro, R. & de Lieto Vollaro, A. (2016). Outdoor thermal comfort in the
Mediterranean area. A transversal study in Rome, Italy. Building and Environment, 96, 46-61. Access Address
(02.03.2024): https://www.sciencedirect.com/science/article/pii/S0360132315301852
-
Salman, A. M. & Saleem, Y. M. (2021). The effect of Urban Heat Island mitigation strategies on outdoor human
thermal comfort in the city of Baghdad. Frontiers of Architectural Research, 10 (4), 838-856. Access Address
(06.03.2024): https://www.sciencedirect.com/science/article/pii/S2095263521000431
-
Samaali, M., Courault, D., Bruse, M., Olioso, A. & Occelli, R. (2007). Analysis of a 3D boundary layer model at local
scale: Validation on soybean surface radiative measurements. Atmospheric Research, 85 (2), 183-198. Access
Address (21.03.2024): https://www.sciencedirect.com/science/article/pii/S0169809506002924
-
Singh, M. & Laefer, D. F. (2015). Recent trends and remaining limitations in urban microclimate models. Open
Urban Studies Demography Journal, 1 (1). Access Address (22.03.2024):
https://www.researchgate.net/publication/273528676_Recent_Trends_and_Remaining_Limitations_in_Urba
n_Microclimate_Models
-
Spagnolo, J. & de Dear, R. (2003). A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and Environment, 38 (5), 721-738. Access Address (05.05.2024): https://www.sciencedirect.com/science/article/pii/S0360132302002093
-
Stewart, I. D. & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American
Meteorological Society, 93 (12), 1879-1900. Access Address (05.02.2024):
https://www.researchgate.net/publication/258607564_Local_Climate_Zones_for_Urban_Temperature_Studi
es
-
Stewart, I. D. (2011). Redefining the urban heat island. University of British Columbia Vancouver. Access Address
(25.02.2024): https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0072360
-
Stone Jr, B. & Rodgers, M. O. (2001). Urban form and thermal efficiency: how the design of cities influences the
urban heat island effect, American Planning Association. Journal of the American Planning Association, 67 (2),
186.
-
Streutker, D. R. (2003). A study of the urban heat island of Houston, Texas, Rice University.
-
Sun, R., Liu, J., Lai, D. & Liu, W. (2023). Building form and outdoor thermal comfort: Inverse design the
microclimate of outdoor space for a kindergarten, Energy and Buildings, 284, 112824.
-
Taleb, D. & Abu-Hijleh, B. (2013). Urban heat islands: Potential effect of organic and structured urban
configurations on temperature variations in Dubai, UAE. Renewable Energy, 50, 747-762.
-
Theophilou, M. K. & Serghides, D. (2015). Estimating the characteristics of the Urban Heat Island Effect in Nicosia,
Cyprus, using multiyear urban and rural climatic data and analysis, Energy Buildings, 108, 137-144.
-
Zhou, Z. & Dong, L. (2023). Experimental investigation of the effect of surgical masks on outdoor thermal comfort
in Xiamen, China, Building and Environment, 229, 109893.