Research Article
BibTex RIS Cite

The Potential of Digital Technologies as a Catalyst for the Transition to Circularity

Year 2025, Volume: 10 Issue: 1, 638 - 653, 28.07.2025
https://doi.org/10.30785/mbud.1643270

Abstract

Digital technologies (DTs) are increasingly recognized as pivotal enablers of the transition to a circular economy (CE) across various sectors. This study focuses on addressing this research gap by examining how digital technologies can facilitate the transition to a circular economy in the built environment. The study investigates the following key questions: Which DTs hold the greatest potential for advancing circularity in the construction industry? And how can these technologies be strategically applied to enable circular principles? Through an extensive literature review and comparative analysis, the study identifies technologies such as Additive Manufacturing (AM), Artificial Intelligence (AI), Building Information Modeling (BIM), the Internet of Things (IoT), and Big Data Analytics (BDA) as critical tools for driving circular strategies. These technologies enhance material and energy efficiency, minimize waste, and resource recovery. Research findings provide feasible insights for researchers, and industry practitioners, enlighting the way for a more circular built environment.

References

  • Adebiyi, T. A., Ajenifuja, N. A. & Zhang, R. (2024). Digital twins and civil engineering phases: reorienting adoption strategies. arXiv preprint arXiv:2403.02426. doi: https://doi.org/10.48550/arXiv.2403.02426
  • Akanbi, L.A., Oyedele, A.O., Oyedele, L.O. & Salami, R.O. (2020). Deep learning model for Demolition Waste Prediction in a circular economy. J. Clean. Prod., 274, 122843. doi: https://doi.org/10.1016/j.jclepro.2020.122843.
  • Alsofiani, M. A. (2024). Digitalization in infrastructure construction projects: A PRISMA-Based Review of Benefits and Obstacles. arXiv preprint arXiv:2405.16875. doi: https://doi.org/10.48550/arXiv.2405.16875
  • Atta, I., Bakhoum, E. S. & Marzouk, M. M. (2021). Digitizing material passport for sustainable construction projects using BIM. Journal of Building Engineering, 43, 103233. doi: https://doi.org/10.1016/j.jobe.2021.103233
  • Attia, S. (2018). Regenerative and Positive Impact Architecture: Learning from Case Studies. Springer Nature eBook
  • Akbarieh, A., Jayasinghe, L. B., Waldmann, D. & Teferle, F. N. (2020). BIM-based end-of-lifecycle decision making and digital deconstruction: Literature review. Sustainability, 12(7), 2670. doi: https://doi.org/10.3390/su12072670
  • Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A. & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. doi: https://doi.org/10.1016/j.autcon.2022.104440
  • Benachio, G. L. F., Freitas, M. d. C. D. & Tavares, S. F. (2020). Circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, 260. doi: https://doi.org/10.1016/j.jclepro.2020.121046
  • Block, P., Schlueter, A., Veenendaal, D., Bakker, J., Begle, M., Hischier, I., Hofer, J., Jayathissa, P., Maxwell, I., Echenagucia, T. M., Nagy, Z., Pigram, D., Svetozarevic, B., Torsing, R., Verbeek, J., Willmann, A. & Lydon, G. P. (2017). NEST HiLo: Investigating lightweight construction and adaptive energy systems. Journal of Building Engineering, 12, 332-341. doi: https://doi.org/10.1016/j.jobe.2017.06.013
  • Bocken, N. M. P., de Pauw, I., Bakker, C. & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 308-320. doi: https://doi.org/10.1080/21681015.2016.1172124
  • Boje, C., Guerriero, A., Kubicki, S. & Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114, 103179. doi: https://doi.org/10.1016/j.autcon.2020.103179
  • Brynjolfsson, E. & McAfee, A. (2015). The second machine age: work, progress, and prosperity in a time of brilliant technologies. Choice Reviews Online, 52(06), 52–3201. doi: https://doi.org/10.5860/choice.184834
  • Choi, W., Advincula, R. C., Wu, H. F. & Jiang, Y. (2023). Artificial intelligence and machine learning in the design and additive manufacturing of responsive composites. MRS Communications, 13(5), 714–724. doi: https://doi.org/10.1557/s43579-023-00473-9
  • Craft, W., Ding, L., Prasad, D., Partridge, L. & Else, D. (2017). Development of a regenerative design model for building retrofits. Procedia Engineering, 180, 658–668. doi: https://doi.org/10.1016/j.proeng.2017.04.225
  • Davison, B. & Tingley, D. (2011). Design for deconstruction and material reuse. Proceedings of the Institution of Civil Engineers - Energy, 164(4), 195-204. doi: 10.1680/ener.2011.164.4.195
  • de Reuver, M., Sørensen, C. & Basole, R. C. (2018). The digital platform: A research agenda. Journal of Information Technology, 33(2), 124-135. doi: https://doi.org/10.1057/s41265-016-0033-3
  • De Wolf, C., Saucier, J. & Hage, B. (2020). Circular economy in the construction sector: Challenges and opportunities for a sustainable built environment. Springer.
  • Durmisevic, E. (2019). Circular economy in construction, Design strategies for reversible buildings, BAMB report. Access Address (01.01.2025): https://25e4127a-5304-42a1-b3cd- 4592cde3389b.filesusr.com/ugd/59a22d_4078b8f9105e460e8375b433a865355d.pdf
  • Eberhardt, L.C.M., Birkved, M. & Birgisdottir, H. (2020) Building design and construction strategies for a circular economy. Architectural Engineering and Design Management, 18, 93-113.
  • EMF, (2014). Ellen MacArthur Foundation, Towards the circular economy Vol. 3: accelerating the scale-up across global supply chains.
  • Eren, Ö. (2024). A guide to the reuse of demountable construction elements and components. Journal of Architectural Sciences and Applications, 9(2), 1058-1077. doi: https://doi.org/10.30785/mbud.1540928
  • Geissdoerfer, M., Savaget, P., Bocken, N. M. P. & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. doi: 10.1016/j.jclepro.2016.12.048.
  • Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Advances Research Article, 3, 5 p. doi: https://doi.org/10.1126/sciadv.1700782
  • Gálvez-Martos, J.-L., Styles, D., Schoenberger, H., & Zeschmar-Lahl, B. (2018). Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 136, 166-178. doi: https://doi.org/10.1016/j.resconrec.2018.04.016
  • Gordon, M., Batallé, A., De Wolf, C., Sollazzo, A., Dubor, A. & Wang, T. (2023). Automating building element detection for deconstruction planning and material reuse: A case study. Automation in Construction, 146. doi: https://doi.org/10.1016/j.autcon.2022.104697
  • Gibson, I., Rosen, D. & Stucker, B. (2015). Introduction and basic principles. In Additive Manufacturing Technologies (pp. 1-18). doi: https://doi.org/10.1007/978-1-4939-2113-3_1
  • Gramazio, F., Kohler, M., Willmann, J. & Jaeger, R. (2014). The robotic touch : how robots change architecture : Gramazio & Kohler, research ETH Zurich 2005-2013. In Park Books. Access Address (01.01.2025): https://ci.nii.ac.jp/ncid/BB15951754
  • Heisel, F. & Rau-Oberhuber, S. (2020). Calculation and evaluation of circularity indicators for the built environment using the case studies of UMAR and Madaster. Journal of Cleaner Production, 243. doi: https://doi.org/10.1016/j.jclepro.2019.118482
  • Honic, M., Kovacic, I. & Rechberger, H. (2019). Concept for a BIM-based Material Passport for buildings. IOP Conference Series Earth and Environmental Science, 225, 012073. doi: https://doi.org/10.1088/1755- 1315/225/1/012073
  • Heinrich, M. & Lang, W. (2019). Material Passports-Best Practice: Innovative Solutions for a Transition to a Circular
  • Economy in the Built Environment. i. a. w. B. Technische Universität München.
  • Hossain, M. U., Ng, S. T., Antwi-Afari, P. & Amor, B. (2020). Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renewable and Sustainable Energy Reviews, 130. doi: https://doi.org/10.1016/j.rser.2020.109948
  • Kedir, F., Bucher, D. F. & Hall, D. M. (2021). A Proposed Material Passport Ontology to Enable Circularity for Industrialized Construction. 2021 European Conference on Computing in Construction, Rhodes, Greece.
  • Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization framework for early-stage design support. Solar Energy, 125, 161-179. doi: https://doi.org/10.1016/j.solener.2015.12.020
  • Kubbinga, B., Bamberger, M., van Noort, E., van den Reek, D., Blok, M., Roemers, G., Hoek, J., & Faes, K. (2018). A Framework for Circular Buildings- Indicators for Possible Inclusion in BREEAM.
  • Li, C. Z., Chen, Z., Xue, F., Kong, X. T. R., Xiao, B., Lai, X. & Zhao, Y. (2021). A blockchain- and IoT-based smart product-service system for the sustainability of prefabricated housing construction. Journal of Cleaner Production, 286. doi: https://doi.org/10.1016/j.jclepro.2020.125391
  • Munaro, M. R. & Tavares, S. F. (2021). Materials passport’s review: challenges and opportunities toward a circular economy building sector. Built Environment Project and Asset Management, 11(4), 767-782. doi: https://doi.org/10.1108/bepam-02-2020-0027
  • Puma, G. C. C., Salles, A., Turk, J., Ungureanu, V. & Bragança, L. (2024). Utilisation of reused steel and slag: Analysing the Circular Economy Benefits through Three Case Studies. Buildings, 14(4), 979. doi: https://doi.org/10.3390/buildings14040979
  • Pomponi, F. & Moncaster, A. M. (2017). Circular economy for the built environment: A research framework. Journal of Cleaner Production, 143, 710–718. doi: https://doi.org/10.1016/j.jclepro.2016.12.055
  • Reed, B. (2007). Shifting from ‘sustainability’ to regeneration. Building Research & Information, 35(6), 674-680. doi: https://doi.org/10.1080/09613210701475753
  • Rolle, R., Martucci, V. & Godoy, E. (2020). Architecture for digital twin implementation focusing on Industry 4.0. IEEE Latin America Transactions, 18(5), 889–898, doi: 10.1109/TLA.2020.9082917.
  • Saberi, S., Kouhizadeh, M., Sarkis, J. & Shen, L. (2018). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135. doi: https://doi.org/10.1080/00207543.2018.1533261
  • Stahel, W. R. (2019). The circular economy: A user's guide. Routledge.
  • Stojanovska-Georgievska, L., Sandeva, I., Krleski, A., Spasevska, H., Ginovska, M., Panchevski, I., Ivanov, R., Arnal, I. P., Cerovsek, T. & Funtik, T. (2022). BIM in the Center of Digital Transformation of the Construction Sector—The status of BIM adoption in North Macedonia. Buildings, 12(2), 218. doi: https://doi.org/10.3390/buildings12020218
  • Turk, Z. & Klinic, R. (2017). Potentials of Blockchain Technology for constructfion Management. Procedia Engineering (196): 638-645.
  • United Nations Environment Programme (UNEP). (2019). Global environmental outlook – GEO-6: Regional assessments. Cambridge University Press.
  • Westphal, E. & Seitz, H. (2024). Generative Artificial Intelligence: Analyzing Its Future Applications in Additive Manufacturing. Big Data and Cognitive Computing, 8(7), 74. doi: https://doi.org/10.3390/bdcc8070074
  • Yigitbas, E., Nowosad, A. & Engels, G. (2023). Supporting Construction and Architectural Visualization through BIM and AR/VR: A Systematic Literature Review. arXiv preprint arXiv:2306.12274. doi: https://doi.org/10.48550/arXiv.2306.12274

Döngüselliğe Geçişte Katalizör Olarak Dijital Teknolojilerin Potansiyeli

Year 2025, Volume: 10 Issue: 1, 638 - 653, 28.07.2025
https://doi.org/10.30785/mbud.1643270

Abstract

Dijital teknolojiler (DT'ler), çeşitli sektörlerde döngüsel ekonomiye (DE) geçişte katalizör rol oynayan araçlar olarak giderek önem kazanmaktadır. Bu çalışma, dijital teknolojilerin yapma çevrede döngüsel ekonomiye geçişi nasıl kolaylaştırabileceğini inceleyerek bu araştırma boşluğunu ele almayı amaçlamaktadır. Çalışmanın araştırma soruları: Hangi dijital teknolojiler inşaat sektöründe döngüselliği hızlandırma potansiyeline sahiptir? Ve bu teknolojiler döngüsel ilkeleri desteklemek için hangi stratejilere sahiptir? Kapsamlı bir literatür incelemesi ve karşılaştırmalı analiz sonucunda, Katmanlı Üretim (AM), Yapay Zekâ (AI), Yapı Bilgi Modellemesi (BIM), Nesnelerin İnterneti (IoT) ve Büyük Veri Analitiği (BDA) gibi teknolojiler, döngüselliğe geçişte potansiyelleri yüksek araçlar olarak saptanmıştır. Çalışmanın bulguları, bu alanda çalışan araştırmacılar ve sektördeki uzmanlar için uygulanabilir bilgiler sunarak döngüsellik ilke ve stratejileri açısından verimli bir yapma çevreye giden sürece ışık tutmaktadır.

References

  • Adebiyi, T. A., Ajenifuja, N. A. & Zhang, R. (2024). Digital twins and civil engineering phases: reorienting adoption strategies. arXiv preprint arXiv:2403.02426. doi: https://doi.org/10.48550/arXiv.2403.02426
  • Akanbi, L.A., Oyedele, A.O., Oyedele, L.O. & Salami, R.O. (2020). Deep learning model for Demolition Waste Prediction in a circular economy. J. Clean. Prod., 274, 122843. doi: https://doi.org/10.1016/j.jclepro.2020.122843.
  • Alsofiani, M. A. (2024). Digitalization in infrastructure construction projects: A PRISMA-Based Review of Benefits and Obstacles. arXiv preprint arXiv:2405.16875. doi: https://doi.org/10.48550/arXiv.2405.16875
  • Atta, I., Bakhoum, E. S. & Marzouk, M. M. (2021). Digitizing material passport for sustainable construction projects using BIM. Journal of Building Engineering, 43, 103233. doi: https://doi.org/10.1016/j.jobe.2021.103233
  • Attia, S. (2018). Regenerative and Positive Impact Architecture: Learning from Case Studies. Springer Nature eBook
  • Akbarieh, A., Jayasinghe, L. B., Waldmann, D. & Teferle, F. N. (2020). BIM-based end-of-lifecycle decision making and digital deconstruction: Literature review. Sustainability, 12(7), 2670. doi: https://doi.org/10.3390/su12072670
  • Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A. & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. doi: https://doi.org/10.1016/j.autcon.2022.104440
  • Benachio, G. L. F., Freitas, M. d. C. D. & Tavares, S. F. (2020). Circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, 260. doi: https://doi.org/10.1016/j.jclepro.2020.121046
  • Block, P., Schlueter, A., Veenendaal, D., Bakker, J., Begle, M., Hischier, I., Hofer, J., Jayathissa, P., Maxwell, I., Echenagucia, T. M., Nagy, Z., Pigram, D., Svetozarevic, B., Torsing, R., Verbeek, J., Willmann, A. & Lydon, G. P. (2017). NEST HiLo: Investigating lightweight construction and adaptive energy systems. Journal of Building Engineering, 12, 332-341. doi: https://doi.org/10.1016/j.jobe.2017.06.013
  • Bocken, N. M. P., de Pauw, I., Bakker, C. & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 308-320. doi: https://doi.org/10.1080/21681015.2016.1172124
  • Boje, C., Guerriero, A., Kubicki, S. & Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114, 103179. doi: https://doi.org/10.1016/j.autcon.2020.103179
  • Brynjolfsson, E. & McAfee, A. (2015). The second machine age: work, progress, and prosperity in a time of brilliant technologies. Choice Reviews Online, 52(06), 52–3201. doi: https://doi.org/10.5860/choice.184834
  • Choi, W., Advincula, R. C., Wu, H. F. & Jiang, Y. (2023). Artificial intelligence and machine learning in the design and additive manufacturing of responsive composites. MRS Communications, 13(5), 714–724. doi: https://doi.org/10.1557/s43579-023-00473-9
  • Craft, W., Ding, L., Prasad, D., Partridge, L. & Else, D. (2017). Development of a regenerative design model for building retrofits. Procedia Engineering, 180, 658–668. doi: https://doi.org/10.1016/j.proeng.2017.04.225
  • Davison, B. & Tingley, D. (2011). Design for deconstruction and material reuse. Proceedings of the Institution of Civil Engineers - Energy, 164(4), 195-204. doi: 10.1680/ener.2011.164.4.195
  • de Reuver, M., Sørensen, C. & Basole, R. C. (2018). The digital platform: A research agenda. Journal of Information Technology, 33(2), 124-135. doi: https://doi.org/10.1057/s41265-016-0033-3
  • De Wolf, C., Saucier, J. & Hage, B. (2020). Circular economy in the construction sector: Challenges and opportunities for a sustainable built environment. Springer.
  • Durmisevic, E. (2019). Circular economy in construction, Design strategies for reversible buildings, BAMB report. Access Address (01.01.2025): https://25e4127a-5304-42a1-b3cd- 4592cde3389b.filesusr.com/ugd/59a22d_4078b8f9105e460e8375b433a865355d.pdf
  • Eberhardt, L.C.M., Birkved, M. & Birgisdottir, H. (2020) Building design and construction strategies for a circular economy. Architectural Engineering and Design Management, 18, 93-113.
  • EMF, (2014). Ellen MacArthur Foundation, Towards the circular economy Vol. 3: accelerating the scale-up across global supply chains.
  • Eren, Ö. (2024). A guide to the reuse of demountable construction elements and components. Journal of Architectural Sciences and Applications, 9(2), 1058-1077. doi: https://doi.org/10.30785/mbud.1540928
  • Geissdoerfer, M., Savaget, P., Bocken, N. M. P. & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. doi: 10.1016/j.jclepro.2016.12.048.
  • Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Advances Research Article, 3, 5 p. doi: https://doi.org/10.1126/sciadv.1700782
  • Gálvez-Martos, J.-L., Styles, D., Schoenberger, H., & Zeschmar-Lahl, B. (2018). Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 136, 166-178. doi: https://doi.org/10.1016/j.resconrec.2018.04.016
  • Gordon, M., Batallé, A., De Wolf, C., Sollazzo, A., Dubor, A. & Wang, T. (2023). Automating building element detection for deconstruction planning and material reuse: A case study. Automation in Construction, 146. doi: https://doi.org/10.1016/j.autcon.2022.104697
  • Gibson, I., Rosen, D. & Stucker, B. (2015). Introduction and basic principles. In Additive Manufacturing Technologies (pp. 1-18). doi: https://doi.org/10.1007/978-1-4939-2113-3_1
  • Gramazio, F., Kohler, M., Willmann, J. & Jaeger, R. (2014). The robotic touch : how robots change architecture : Gramazio & Kohler, research ETH Zurich 2005-2013. In Park Books. Access Address (01.01.2025): https://ci.nii.ac.jp/ncid/BB15951754
  • Heisel, F. & Rau-Oberhuber, S. (2020). Calculation and evaluation of circularity indicators for the built environment using the case studies of UMAR and Madaster. Journal of Cleaner Production, 243. doi: https://doi.org/10.1016/j.jclepro.2019.118482
  • Honic, M., Kovacic, I. & Rechberger, H. (2019). Concept for a BIM-based Material Passport for buildings. IOP Conference Series Earth and Environmental Science, 225, 012073. doi: https://doi.org/10.1088/1755- 1315/225/1/012073
  • Heinrich, M. & Lang, W. (2019). Material Passports-Best Practice: Innovative Solutions for a Transition to a Circular
  • Economy in the Built Environment. i. a. w. B. Technische Universität München.
  • Hossain, M. U., Ng, S. T., Antwi-Afari, P. & Amor, B. (2020). Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renewable and Sustainable Energy Reviews, 130. doi: https://doi.org/10.1016/j.rser.2020.109948
  • Kedir, F., Bucher, D. F. & Hall, D. M. (2021). A Proposed Material Passport Ontology to Enable Circularity for Industrialized Construction. 2021 European Conference on Computing in Construction, Rhodes, Greece.
  • Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization framework for early-stage design support. Solar Energy, 125, 161-179. doi: https://doi.org/10.1016/j.solener.2015.12.020
  • Kubbinga, B., Bamberger, M., van Noort, E., van den Reek, D., Blok, M., Roemers, G., Hoek, J., & Faes, K. (2018). A Framework for Circular Buildings- Indicators for Possible Inclusion in BREEAM.
  • Li, C. Z., Chen, Z., Xue, F., Kong, X. T. R., Xiao, B., Lai, X. & Zhao, Y. (2021). A blockchain- and IoT-based smart product-service system for the sustainability of prefabricated housing construction. Journal of Cleaner Production, 286. doi: https://doi.org/10.1016/j.jclepro.2020.125391
  • Munaro, M. R. & Tavares, S. F. (2021). Materials passport’s review: challenges and opportunities toward a circular economy building sector. Built Environment Project and Asset Management, 11(4), 767-782. doi: https://doi.org/10.1108/bepam-02-2020-0027
  • Puma, G. C. C., Salles, A., Turk, J., Ungureanu, V. & Bragança, L. (2024). Utilisation of reused steel and slag: Analysing the Circular Economy Benefits through Three Case Studies. Buildings, 14(4), 979. doi: https://doi.org/10.3390/buildings14040979
  • Pomponi, F. & Moncaster, A. M. (2017). Circular economy for the built environment: A research framework. Journal of Cleaner Production, 143, 710–718. doi: https://doi.org/10.1016/j.jclepro.2016.12.055
  • Reed, B. (2007). Shifting from ‘sustainability’ to regeneration. Building Research & Information, 35(6), 674-680. doi: https://doi.org/10.1080/09613210701475753
  • Rolle, R., Martucci, V. & Godoy, E. (2020). Architecture for digital twin implementation focusing on Industry 4.0. IEEE Latin America Transactions, 18(5), 889–898, doi: 10.1109/TLA.2020.9082917.
  • Saberi, S., Kouhizadeh, M., Sarkis, J. & Shen, L. (2018). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135. doi: https://doi.org/10.1080/00207543.2018.1533261
  • Stahel, W. R. (2019). The circular economy: A user's guide. Routledge.
  • Stojanovska-Georgievska, L., Sandeva, I., Krleski, A., Spasevska, H., Ginovska, M., Panchevski, I., Ivanov, R., Arnal, I. P., Cerovsek, T. & Funtik, T. (2022). BIM in the Center of Digital Transformation of the Construction Sector—The status of BIM adoption in North Macedonia. Buildings, 12(2), 218. doi: https://doi.org/10.3390/buildings12020218
  • Turk, Z. & Klinic, R. (2017). Potentials of Blockchain Technology for constructfion Management. Procedia Engineering (196): 638-645.
  • United Nations Environment Programme (UNEP). (2019). Global environmental outlook – GEO-6: Regional assessments. Cambridge University Press.
  • Westphal, E. & Seitz, H. (2024). Generative Artificial Intelligence: Analyzing Its Future Applications in Additive Manufacturing. Big Data and Cognitive Computing, 8(7), 74. doi: https://doi.org/10.3390/bdcc8070074
  • Yigitbas, E., Nowosad, A. & Engels, G. (2023). Supporting Construction and Architectural Visualization through BIM and AR/VR: A Systematic Literature Review. arXiv preprint arXiv:2306.12274. doi: https://doi.org/10.48550/arXiv.2306.12274
There are 48 citations in total.

Details

Primary Language English
Subjects Architectural Science and Technology
Journal Section Research Articles
Authors

Zeynep Melis Oğuz 0000-0001-7403-149X

Özlem Eren 0000-0002-7675-6483

Publication Date July 28, 2025
Submission Date February 19, 2025
Acceptance Date July 2, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Oğuz, Z. M., & Eren, Ö. (2025). The Potential of Digital Technologies as a Catalyst for the Transition to Circularity. Journal of Architectural Sciences and Applications, 10(1), 638-653. https://doi.org/10.30785/mbud.1643270