Research Article
BibTex RIS Cite

Bazı maddelerin Heterorhabditis bacteriophora HBH ırkının in vitro kitle üretimi üzerine etkileri

Year 2018, , 209 - 212, 03.12.2018
https://doi.org/10.29136/mediterranean.437211

Abstract



Biyolojik
mücadele, tarımda kimyasal pestisitlere karşı önemli bir alternatif yöntemdir.
Entomopatojen nematodlar (EPN) çoğunlukla toprak kaynaklı zararlı böceklere
karşı kullanılan doğa dostu biyolojik mücadele ajanlarıdır. Uzun yıllardan beri
EPN’ler kitle halinde ticari olarak üretilmektedirler. Kitle üretimi genellik
in vitro katı ve sıvı kültürler
içerisinde yapılmaktadır. Kitle üretiminden sonra EPN’ler çeşitli dolgu
maddeleri ile formüle edilmekte ve ticari ürün olarak satılmaktadır. Kitle
üretiminde kullanılan en yaygın maddeler arasında protein ve yağ kaynağı olarak
Nutrient Broth, Yeast ekstraktı, soya unu ve çeşitli bitkisel yağlar
bulunmaktadır. Kitle üretiminin verimini artırmak için bu üretim ortamı
içerisinde farklı maddeler eklenebilmektedir. Bu çalışmada, lesitin ve yumurta
sarısı ve ikisinin birleşiminin
Heterorhabditis
bacteriophora
HBH ırkının kitle üretiminin verimi üzerindeki etkileri
incelenmiştir. Çalışmada
H. bacteriophora
türünün Türkiye’de farklı iklime sahip bölgelere ait izolatlarının
hibritlenmesi ile elde edilmiş HBH ırkı kullanılmıştır. Kitle üretiminin
veriminin hesaplanmasında infektif jüvenil (IJ) sayısı ölçüt olarak
belirlenmiştir. Sonuçlar incelendiğinde tüm uygulamaların kontrole göre
istatistiksel olarak daha etkili olduğu, en iyi uygulamanın ise lesitin
kullanılan ortam ile elde edildiği belirlenmiştir. Bu sonuç ile lesitinin
in vitro katı kitle üretiminde ek madde
olarak kullanılabileceği tespit edilmiştir.


References

  • Abu Hatab M, Gaugler R (2001) Diet composition and lipids of in vitro-produced Heterorhabditis bacteriophora. Biological Control 20(1): 1–7.
  • Boemare N, Laumond C, Mauleon H (1996) The Entomopathogenic Nematode-Bacterium Complex: Biology, Life Cycle and Vertebrate Safety. Biocontrol Science and Technology 6(3): 333–346.
  • Chavarría-Hernández N, De La Torre M (2001) Population growth kinetics of the nematode, Steinernema feltiae, in submerged monoxenic culture. Biotechnology Letters 23(4): 311–315.
  • Chavarría-Hernández N, Espino-García JJ, Sanjuan-Galindo R, Rodríguez-Hernández AI (2006) Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey. Kinetics and modeling. Journal of Biotechnology 125: 75–84.
  • Ehlers R (1996) Current and future use of nematodes in biocontrol: practice and commercial aspects with regard to regulatory policy issues. Biocontrol Science and Technology 6: 303–316.
  • Ehlers R, Lunau S, Krasomil-Osterfeld K (1998) Liquid culture of the entomopathogenic nematode-bacterium-complex Heterorhabditis megidis/Photorhabdus luminescens. BioControl 43: 77–86.
  • Ehlers RU, Niemann I, Hollmer S, Strauch O, Jende D, Shanmugasundaram M, Mehta U, Easwaramoorthy S, Burnell A (2000) Mass production potential of the bacto-helminthic biocontrol complex Heterorhabditis indica-Photorhabdus luminescens. Biocontrol Science and Technology 10(5): 607–616.
  • Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology 56(5–6): 623–633.
  • El-Sadawy HA (2011) Mass production of steinernema spp. on in-vitro developed solid medium. World Applied Sciences Journal 14(6): 803–813.
  • Ferreira T, Addison M, Malan A (2014) In vitro liquid culture of a South African isolate of Heterorhabditis zealandica for the control of insect pests. African Entomology 22(1): 80–92.
  • Gaugler R, Brown I, Shapiro-Ilan D, Atwa A (2002) Automated technology for in vivo mass production of entomopathogenic nematodes. Biological Control 24(2): 199–206.
  • Grewal P (2000) Enhanced ambient storage stability of an entomopathogenic nematode through anhydrobiosis. Pest Management Science 56(August 1999): 401–406.
  • Grewal P, Wang X, Taylor RAJ (2002) Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? International journal for parasitology 32(6): 717–25.
  • Han R, Ehlers RU (2001) Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS microbiology ecology 35(3): 239–247.
  • Johnigk S, Ecke F, Poehling M, Ehlers RU (2004) Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): Improved timing of dauer juvenile inoculation. Applied microbiology and biotechnology 64(5): 651–8.
  • Kaya HK, Gaugler R (1993) Entomopathogenic Nematodes. Annual Review of Entomology 38(125): 181–206.
  • Kaya HK, Stock SP (1997) Techniques in insect nematology. In Manual of Techniques in Insect Pathology, Lawrence A. (ed). Elsevier; 281–324.
  • Lunau S, Stoessel S, Schmidt-Peisker AJ, Ehlers RU (1993) Establishment of Monoxenic Inocula for Scaling up in vitro Cultures of the Entomopathogenic Nematodes Steinernema spp. and Heterorhabditis spp. Nematologica 39(1–4): 385–399.
  • Peters A (1996) The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Science and Technology 6(3): 389–402.
  • Ramakuwela T, Hatting J, Laing MD, Hazir S, Thiebaut N (2016) In vitro solid-state production of Steinernema innovationi with cost analysis. Biocontrol Science and Technology 26(6): 792–808.
  • Shapiro-Ilan DI, Gaugler R (2002) Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of industrial microbiology & biotechnology 28(3): 137–146.
  • Sharma MP, Sharma AN, Hussaini SS (2011) Entomopathogenic nematodes, a potential microbial biopesticide: mass production and commercialisation status – a mini review. Archives Of Phytopathology and Plant Protection 44(March 2015): 855–870.
  • Strauch O, Ehlers RU (2000) Influence of the aeration rate on the yields of the biocontrol nematode Heterorhabditis megidis in monoxenic liquid cultures. Applied Microbiology and Biotechnology 54: 9–13.
  • Susurluk IA, Ehlers R-U (2008) Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. BioControl 53(4): 627–641.
  • Susurluk IA, Can Ulu T, Kongu Y (2013a) Tolerances of hybridized entomopathogenic nematode Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) strains to heat and desiccation. Turkiye Entomoloji Dergisi 37(2): 221–228.
  • Susurluk IA, Kongu Y, Ulu TC (2013b) Quality control of in vitro produced Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) strains isolated from Turkey. Türkiye Entomoloji Dergisi 37(3): 283–291.
  • Susurluk IA, Ulu TC (2015) Virulence comparisons of high-temperature-adapted Heterorhabditis bacteriophora, Steinernema feltiae and S. carpocapsae. Helminthologia (Poland) 52(2): 118–122.
  • Wouts WM (1981) Mass production of the entomogenous nematode Heterorhabditis heliothidis (Nematoda: Heterorhabditidae) on artificial media. Journal of nematology 13(4): 467–469.
  • Wright DJ, Peters A, Schroer S, Fife JP (2005) Application technology (PS Grewal, RU Ehlers, and DI Shapiro-Ilan, Eds). Nematodes as biocontrol agents: 91–106.

Effects of several ingredients on in vitro mass production of Heterorhabditis bacteriophora HBH strain

Year 2018, , 209 - 212, 03.12.2018
https://doi.org/10.29136/mediterranean.437211

Abstract

Biological control is a great alternative to chemical pesticides in agriculture. Entomopathogenic nematodes (EPNs) are environmentally safe biocontrol agents that are used mostly against soil-dwelling insect pests. EPNs have been commercially mass produced for several decades. Mass production is generally done in vitro using solid and liquid cultures. After mass production, they are formulated with filler compounds and sold as commercial products. Most common substances for in vitro production are nutrient broth, yeast extract, soyflour and different plant oils for protein and lipid source. To increase the production yield of the mass culture, several compounds can be added to the media. In this study; lecithin, egg yolk and the both together were used in solid medium and effects of these additional compounds were examined on mass production of hybrid Heterorhabditis bacteriophora HBH strain, which was obtained from hybridization of Turkish isolates. Infective juveniles (IJs) of the strain were targeted as mass production yield criteria. According to the results, all treatments showed statistically better yields compared to control, and lecithin was statistically the best treatment among others. Thus, lecithin could be used as an additional compound in in vitro solid mass production media.


References

  • Abu Hatab M, Gaugler R (2001) Diet composition and lipids of in vitro-produced Heterorhabditis bacteriophora. Biological Control 20(1): 1–7.
  • Boemare N, Laumond C, Mauleon H (1996) The Entomopathogenic Nematode-Bacterium Complex: Biology, Life Cycle and Vertebrate Safety. Biocontrol Science and Technology 6(3): 333–346.
  • Chavarría-Hernández N, De La Torre M (2001) Population growth kinetics of the nematode, Steinernema feltiae, in submerged monoxenic culture. Biotechnology Letters 23(4): 311–315.
  • Chavarría-Hernández N, Espino-García JJ, Sanjuan-Galindo R, Rodríguez-Hernández AI (2006) Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey. Kinetics and modeling. Journal of Biotechnology 125: 75–84.
  • Ehlers R (1996) Current and future use of nematodes in biocontrol: practice and commercial aspects with regard to regulatory policy issues. Biocontrol Science and Technology 6: 303–316.
  • Ehlers R, Lunau S, Krasomil-Osterfeld K (1998) Liquid culture of the entomopathogenic nematode-bacterium-complex Heterorhabditis megidis/Photorhabdus luminescens. BioControl 43: 77–86.
  • Ehlers RU, Niemann I, Hollmer S, Strauch O, Jende D, Shanmugasundaram M, Mehta U, Easwaramoorthy S, Burnell A (2000) Mass production potential of the bacto-helminthic biocontrol complex Heterorhabditis indica-Photorhabdus luminescens. Biocontrol Science and Technology 10(5): 607–616.
  • Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology 56(5–6): 623–633.
  • El-Sadawy HA (2011) Mass production of steinernema spp. on in-vitro developed solid medium. World Applied Sciences Journal 14(6): 803–813.
  • Ferreira T, Addison M, Malan A (2014) In vitro liquid culture of a South African isolate of Heterorhabditis zealandica for the control of insect pests. African Entomology 22(1): 80–92.
  • Gaugler R, Brown I, Shapiro-Ilan D, Atwa A (2002) Automated technology for in vivo mass production of entomopathogenic nematodes. Biological Control 24(2): 199–206.
  • Grewal P (2000) Enhanced ambient storage stability of an entomopathogenic nematode through anhydrobiosis. Pest Management Science 56(August 1999): 401–406.
  • Grewal P, Wang X, Taylor RAJ (2002) Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? International journal for parasitology 32(6): 717–25.
  • Han R, Ehlers RU (2001) Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS microbiology ecology 35(3): 239–247.
  • Johnigk S, Ecke F, Poehling M, Ehlers RU (2004) Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): Improved timing of dauer juvenile inoculation. Applied microbiology and biotechnology 64(5): 651–8.
  • Kaya HK, Gaugler R (1993) Entomopathogenic Nematodes. Annual Review of Entomology 38(125): 181–206.
  • Kaya HK, Stock SP (1997) Techniques in insect nematology. In Manual of Techniques in Insect Pathology, Lawrence A. (ed). Elsevier; 281–324.
  • Lunau S, Stoessel S, Schmidt-Peisker AJ, Ehlers RU (1993) Establishment of Monoxenic Inocula for Scaling up in vitro Cultures of the Entomopathogenic Nematodes Steinernema spp. and Heterorhabditis spp. Nematologica 39(1–4): 385–399.
  • Peters A (1996) The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Science and Technology 6(3): 389–402.
  • Ramakuwela T, Hatting J, Laing MD, Hazir S, Thiebaut N (2016) In vitro solid-state production of Steinernema innovationi with cost analysis. Biocontrol Science and Technology 26(6): 792–808.
  • Shapiro-Ilan DI, Gaugler R (2002) Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of industrial microbiology & biotechnology 28(3): 137–146.
  • Sharma MP, Sharma AN, Hussaini SS (2011) Entomopathogenic nematodes, a potential microbial biopesticide: mass production and commercialisation status – a mini review. Archives Of Phytopathology and Plant Protection 44(March 2015): 855–870.
  • Strauch O, Ehlers RU (2000) Influence of the aeration rate on the yields of the biocontrol nematode Heterorhabditis megidis in monoxenic liquid cultures. Applied Microbiology and Biotechnology 54: 9–13.
  • Susurluk IA, Ehlers R-U (2008) Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. BioControl 53(4): 627–641.
  • Susurluk IA, Can Ulu T, Kongu Y (2013a) Tolerances of hybridized entomopathogenic nematode Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) strains to heat and desiccation. Turkiye Entomoloji Dergisi 37(2): 221–228.
  • Susurluk IA, Kongu Y, Ulu TC (2013b) Quality control of in vitro produced Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) strains isolated from Turkey. Türkiye Entomoloji Dergisi 37(3): 283–291.
  • Susurluk IA, Ulu TC (2015) Virulence comparisons of high-temperature-adapted Heterorhabditis bacteriophora, Steinernema feltiae and S. carpocapsae. Helminthologia (Poland) 52(2): 118–122.
  • Wouts WM (1981) Mass production of the entomogenous nematode Heterorhabditis heliothidis (Nematoda: Heterorhabditidae) on artificial media. Journal of nematology 13(4): 467–469.
  • Wright DJ, Peters A, Schroer S, Fife JP (2005) Application technology (PS Grewal, RU Ehlers, and DI Shapiro-Ilan, Eds). Nematodes as biocontrol agents: 91–106.
There are 29 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Tufan Can Ulu

Alper Susurluk

Publication Date December 3, 2018
Submission Date June 26, 2018
Published in Issue Year 2018

Cite

APA Ulu, T. C., & Susurluk, A. (2018). Effects of several ingredients on in vitro mass production of Heterorhabditis bacteriophora HBH strain. Mediterranean Agricultural Sciences, 31(3), 209-212. https://doi.org/10.29136/mediterranean.437211
AMA Ulu TC, Susurluk A. Effects of several ingredients on in vitro mass production of Heterorhabditis bacteriophora HBH strain. Mediterranean Agricultural Sciences. December 2018;31(3):209-212. doi:10.29136/mediterranean.437211
Chicago Ulu, Tufan Can, and Alper Susurluk. “Effects of Several Ingredients on in Vitro Mass Production of Heterorhabditis Bacteriophora HBH Strain”. Mediterranean Agricultural Sciences 31, no. 3 (December 2018): 209-12. https://doi.org/10.29136/mediterranean.437211.
EndNote Ulu TC, Susurluk A (December 1, 2018) Effects of several ingredients on in vitro mass production of Heterorhabditis bacteriophora HBH strain. Mediterranean Agricultural Sciences 31 3 209–212.
IEEE T. C. Ulu and A. Susurluk, “Effects of several ingredients on in vitro mass production of Heterorhabditis bacteriophora HBH strain”, Mediterranean Agricultural Sciences, vol. 31, no. 3, pp. 209–212, 2018, doi: 10.29136/mediterranean.437211.
ISNAD Ulu, Tufan Can - Susurluk, Alper. “Effects of Several Ingredients on in Vitro Mass Production of Heterorhabditis Bacteriophora HBH Strain”. Mediterranean Agricultural Sciences 31/3 (December 2018), 209-212. https://doi.org/10.29136/mediterranean.437211.
JAMA Ulu TC, Susurluk A. Effects of several ingredients on in vitro mass production of Heterorhabditis bacteriophora HBH strain. Mediterranean Agricultural Sciences. 2018;31:209–212.
MLA Ulu, Tufan Can and Alper Susurluk. “Effects of Several Ingredients on in Vitro Mass Production of Heterorhabditis Bacteriophora HBH Strain”. Mediterranean Agricultural Sciences, vol. 31, no. 3, 2018, pp. 209-12, doi:10.29136/mediterranean.437211.
Vancouver Ulu TC, Susurluk A. Effects of several ingredients on in vitro mass production of Heterorhabditis bacteriophora HBH strain. Mediterranean Agricultural Sciences. 2018;31(3):209-12.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.