Review
PDF Zotero Mendeley EndNote BibTex Cite

Probiyotik bakterilerin mikroenkapsülasyonu

Year 2017, Volume 30, Issue 2, 107 - 112, 01.08.2017

Abstract

Probiyotik özellikteki bakterilerin ve probiyotik bazlı ürünlerin sağlığa pek çok yararları bulunmaktadır. Bu nedenle probiyotik katkılı ürünlerin üretimi üzerine çalışmalar artarak devam etmektedir. Ancak bu özellikteki bakteriler, gıdaların üretimi ve işlenmesi ile sindirim sisteminde canlılıklarını önemli ölçüde kaybetmektedirler. Bu bakterilerin fiziksel bir bariyer içinde saklanarak gıdalara ilave edilmesi, canlılıklarının sindirim sisteminde devam etmesine katkı sağlayabilmektedir. Bu amaçla geliştirilmiş mikroenkapsülasyon yöntemi, çekirdek materyalin bir polimerik malzeme ile kaplanarak 1 ile 1000 µm boyutlarında mikrokürelerin oluşmasını sağlamaktadır. Bu çok kapsamlı teknoloji, ilaçlardan aroma maddelerine kadar çok geniş bir ürün yelpazesinin kapsüllenmesi için kullanılmaktadır. Özellikle son yıllarda bu teknik sahip olduğu pek çok avantajından ötürü canlı hücrelerin enkapsülasyonunu için de yaygın olarak tercih edilmektedir. Bu derlemede, probiyotik özellikteki bakterilerin mikroenkapsülasyonu ve bu bağlamda kullanılan miroenkapsülasyon teknikleri hakkında bilgiler verilmeye çalışılmıştır.

References

  • Akan E, Kınık Ö (2015) Gıda üretimi ve depolanması sırasında probiyotiklerin canlılıklarını etkileyen faktörler. CBÜ Fen Bilimleri Dergisi, 11(2): 155-166.
  • Altun B, Özcan T (2013) Süt ürünlerinde probiyotik bakterilerin mikroenkapsülasyonu II: Kaplama materyalleri ve süt ürünlerinde uygulamalar. U.Ü. Ziraat Fakültesi Dergisi, 27(2): 105-114.
  • Anekella K, Orsat V (2013) Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT-Food Science and Technology 50: 17-24.
  • Cai S, Zhao M, Fang Y, Nishinari K, Phillips GO, Jiang F (2014) Microencapsulation of Lactobacillus acidophilus CGMCC1.2686 Via emulsification/internal gelation of alginate using Ca-EDTA and CaCO3 as calcium sources. Food Hydrocolloids 39: 295-300.
  • Çakır İ (2006) Mikroenkapsülasyon tekniğinin probiyotik gıda üretiminde kullanımı. 9. Gıda Kongresi Bolu, s. 693-696.
  • Chavarri M, Maranon I, Ares R, Ibanez FC, Marzo F, Villaran MDC (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology 142: 185–189.
  • Chen M, Mustapha A (2012) Survival of freeze-dried microcapsules of a-galactosidase producing probiotics in a soy bar matrix. Food Microbiology 30: 68-73.
  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release 162: 56–67.
  • Dubey R, Shami TC, Rao BKU (2009) Mic¬roencapsulation technology and applications. Journal of Defence Science 59(1): 82-95.
  • Etchepare MDA, Raddatz GC, Cichoski AJ, Flores EMM, Barin JS, Zepka LQ, Jacob-Lopes E, Grosso CRF, De Menezes CR (2016a) Effect of resistant starch (hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. Journal of Functional Foods 21: 321-329.
  • Etchepare MDA, Raddatz GC, Flores EMM, Zepka LQ, Jacob-Lopes E, Barin JS, Grosso CRF, De Menezes CR (2016b) Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Science and Technology 65: 511-517.
  • Erem F, Küçükçetin A, Certel M (2013) Bacillus türlerinin probiyotik olarak değerlendirilmesi. Gıda, 38(4): 247-254.
  • Ergin F, Göçer EMÇ, Arslan AA, Küçükçetin A (2015) Probiyotikler ile ilgili yasal düzenlemeler. Akademik Gıda, 13(3): 229-236.
  • Fareez IM, Lim SM, Mishra RK, Ramasamy K (2015) Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum lab12. International Journal of Biological Macromolecules 72: 1419-1428.
  • Fritzen-Freire CB, Prudencio ES, Amboni RDMC, Pinto SS, Murakami ANN, Murakami FS (2012) Microencapsulation of Bifidobacteria by spray drying in the presence of prebiotics. Food Research International 45: 306-312.
  • Gbassi GK, Vandamme T, Ennahar S, Marchioni E (2009) Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology 129: 103-105.
  • Haghshenas B, Nami Y, Haghshenas M, Barzegari A, Sharifi S, Radiah D, Rosli R, Abdullah N (2015) Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39c in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian Journal of Pharmaceutical Sciences 10: 350-361.
  • Kabak B, Var I (2005) Probiyotik bakterilerin canlılığının korunmasında enkapsülasyon tekniğinin kullanımı. Gıda Kongresi İzmir, s. 326-329.
  • Kamalian N, Mirhosseini H, Mustafa S, Manap MYA (2014) Effect of alginate and chitosan on viability and release behavior of Bifidobacterium pseudocatenulatum g4 in simulated gastrointestinal fluid. Carbohydrate Polymers 111: 700–706.
  • Koç M, Sakin M, Kaymak Ertekin F (2010) Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. P.Ü. Mühendislik Bilimleri Dergisi, 16(1): 77-86.
  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal 13(1): 3-13.
  • Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal 14: 737-743.
  • Krasaekoopt W, Bhandari B, Deeth H (2006) Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from uht-and conventionally trea¬ted milk during storage. LWT-Food Science and Technology 39: 177-183.
  • Krasaekoopt W, Watcharapoka S (2014) Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT-Food Science and Technology 57: 761-766.
  • Laelorspoen N, Wongsasulak S, Yoovidhya T, Devahastin S (2014) Microencapsulation of Lactobacillus acidophilus in zein-alginate core-shell microcapsules via electrospraying. Journal of Fonctional Foods 7: 342-349.
  • Martin MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies 27: 15-25.
  • Mirzaei H, Pourjafar H, Homayouni A (2012) Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus la5 and sensory properties in Iranian white brined cheese. Food Chemistry 132: 1966–1970.
  • Mortazavian A, Razavi SH, Ehsani MR, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms. Iranian Journal of Biotechnology 5(1): 1-18.
  • Pedroso DDL, Thomazini M, Heinemann RJB, Favaro-Trindade CS (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal 26 (2): 127-132.
  • Perez-Chabela ML, Lara-Labastida R, Rodriuez-Huezo E, Totosaus A (2013) Effect of spray drying encapsulation of thermotolerant Lactic acid bacteria on meat batters properties. Food Bioprocess Technol 6: 1505-1515.
  • Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal 14: 505-515.
  • Rajam R, Anandharamakrishnan C (2015) Microencapsulation of Lactobacillus plantarum (mtcc 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Science and Technology 60: 773-780.
  • Rathore S, Desai PM, Liew CV, Chan LW, Heng PWS (2013) Microencapsulation of microbial cells. Journal of Food Engineering 116: 369-381.
  • Ribeiro MCE, Chaves KS, Gebara C, Infante FNS, Grosso CRF, Gigante ML (2014) Effect of microencapsulation of Lactobacillus acidophilus la-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International 66: 424-431.
  • Rodriguez-Huezo ME, Estrada-Fernandez AG, Garcia-Almendarez BE, Ludena-Urquizo F, Campos-Montiel RG, Pimentel-Gonzalez DJ (2014) Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT-Food Science and Technology 59 (2): 768-773.
  • Rosas-Flores W, Ramos-Ramirez EG, Salazar-Montoya JA (2013) Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum. Carbohydrate Polymers 98: 1011-1017.
  • Shaharuddin S, Muhamad II (2015) Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus nrrl 442: Enhancement of survivability and thermotolerance. Carbohydrate Polymers 119: 173-181.
  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology 62: 47-55.
  • Ünal E, Erginkaya Z (2010) Probiyotik mikroorganizmaların mikroenkapsülasyonu. Gıda 35(4): 297-304.
  • Vuyst LD, Falony G, Leroy F (2008) Probiotics in fermented sausages. Meat Science 80: 75-78.
  • Zhao Q, Mutukumira A, Lee S, Maddox I, Shu Q (2012) Functional properties of free and encapsulated Lactobacillus reuteri DPC16 during and after passage through a simulated gastrointestinal tract. World Journal of Microbiology and Biotechnology 28 (1): 61–70.

Microencapsulation of probiotic bacteria

Year 2017, Volume 30, Issue 2, 107 - 112, 01.08.2017

Abstract

Probiotic bacteria and probiotic-based products have many benefits to health. Therefore, works on the production of probiotic-added products continues increasingly. However, these bacteria lose their vitality in food production and processing and in the digestive system significantly. The addition of these bacteria to the stored with a physical barrier into foods can contribute to the continuing vitality of them in the digestive system. Microencapsulation method developed for this purpose and involves coating or entrapping of a core material with a polymeric material to generate microspheres in the size range of 1–1000 µm. This versatile technology has been used to encapsulate a wide variety of products from pharmaceuticals to flavors. Especially in recent years, this technology has widely preferred for the encapsulation of living cells because of many advantages. In this review, it has tried to provide information about microencapsulation of the probiotic bacteria and the techniques used in this method.

References

  • Akan E, Kınık Ö (2015) Gıda üretimi ve depolanması sırasında probiyotiklerin canlılıklarını etkileyen faktörler. CBÜ Fen Bilimleri Dergisi, 11(2): 155-166.
  • Altun B, Özcan T (2013) Süt ürünlerinde probiyotik bakterilerin mikroenkapsülasyonu II: Kaplama materyalleri ve süt ürünlerinde uygulamalar. U.Ü. Ziraat Fakültesi Dergisi, 27(2): 105-114.
  • Anekella K, Orsat V (2013) Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT-Food Science and Technology 50: 17-24.
  • Cai S, Zhao M, Fang Y, Nishinari K, Phillips GO, Jiang F (2014) Microencapsulation of Lactobacillus acidophilus CGMCC1.2686 Via emulsification/internal gelation of alginate using Ca-EDTA and CaCO3 as calcium sources. Food Hydrocolloids 39: 295-300.
  • Çakır İ (2006) Mikroenkapsülasyon tekniğinin probiyotik gıda üretiminde kullanımı. 9. Gıda Kongresi Bolu, s. 693-696.
  • Chavarri M, Maranon I, Ares R, Ibanez FC, Marzo F, Villaran MDC (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology 142: 185–189.
  • Chen M, Mustapha A (2012) Survival of freeze-dried microcapsules of a-galactosidase producing probiotics in a soy bar matrix. Food Microbiology 30: 68-73.
  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release 162: 56–67.
  • Dubey R, Shami TC, Rao BKU (2009) Mic¬roencapsulation technology and applications. Journal of Defence Science 59(1): 82-95.
  • Etchepare MDA, Raddatz GC, Cichoski AJ, Flores EMM, Barin JS, Zepka LQ, Jacob-Lopes E, Grosso CRF, De Menezes CR (2016a) Effect of resistant starch (hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. Journal of Functional Foods 21: 321-329.
  • Etchepare MDA, Raddatz GC, Flores EMM, Zepka LQ, Jacob-Lopes E, Barin JS, Grosso CRF, De Menezes CR (2016b) Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Science and Technology 65: 511-517.
  • Erem F, Küçükçetin A, Certel M (2013) Bacillus türlerinin probiyotik olarak değerlendirilmesi. Gıda, 38(4): 247-254.
  • Ergin F, Göçer EMÇ, Arslan AA, Küçükçetin A (2015) Probiyotikler ile ilgili yasal düzenlemeler. Akademik Gıda, 13(3): 229-236.
  • Fareez IM, Lim SM, Mishra RK, Ramasamy K (2015) Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum lab12. International Journal of Biological Macromolecules 72: 1419-1428.
  • Fritzen-Freire CB, Prudencio ES, Amboni RDMC, Pinto SS, Murakami ANN, Murakami FS (2012) Microencapsulation of Bifidobacteria by spray drying in the presence of prebiotics. Food Research International 45: 306-312.
  • Gbassi GK, Vandamme T, Ennahar S, Marchioni E (2009) Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology 129: 103-105.
  • Haghshenas B, Nami Y, Haghshenas M, Barzegari A, Sharifi S, Radiah D, Rosli R, Abdullah N (2015) Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39c in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian Journal of Pharmaceutical Sciences 10: 350-361.
  • Kabak B, Var I (2005) Probiyotik bakterilerin canlılığının korunmasında enkapsülasyon tekniğinin kullanımı. Gıda Kongresi İzmir, s. 326-329.
  • Kamalian N, Mirhosseini H, Mustafa S, Manap MYA (2014) Effect of alginate and chitosan on viability and release behavior of Bifidobacterium pseudocatenulatum g4 in simulated gastrointestinal fluid. Carbohydrate Polymers 111: 700–706.
  • Koç M, Sakin M, Kaymak Ertekin F (2010) Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. P.Ü. Mühendislik Bilimleri Dergisi, 16(1): 77-86.
  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal 13(1): 3-13.
  • Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal 14: 737-743.
  • Krasaekoopt W, Bhandari B, Deeth H (2006) Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from uht-and conventionally trea¬ted milk during storage. LWT-Food Science and Technology 39: 177-183.
  • Krasaekoopt W, Watcharapoka S (2014) Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT-Food Science and Technology 57: 761-766.
  • Laelorspoen N, Wongsasulak S, Yoovidhya T, Devahastin S (2014) Microencapsulation of Lactobacillus acidophilus in zein-alginate core-shell microcapsules via electrospraying. Journal of Fonctional Foods 7: 342-349.
  • Martin MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies 27: 15-25.
  • Mirzaei H, Pourjafar H, Homayouni A (2012) Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus la5 and sensory properties in Iranian white brined cheese. Food Chemistry 132: 1966–1970.
  • Mortazavian A, Razavi SH, Ehsani MR, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms. Iranian Journal of Biotechnology 5(1): 1-18.
  • Pedroso DDL, Thomazini M, Heinemann RJB, Favaro-Trindade CS (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal 26 (2): 127-132.
  • Perez-Chabela ML, Lara-Labastida R, Rodriuez-Huezo E, Totosaus A (2013) Effect of spray drying encapsulation of thermotolerant Lactic acid bacteria on meat batters properties. Food Bioprocess Technol 6: 1505-1515.
  • Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal 14: 505-515.
  • Rajam R, Anandharamakrishnan C (2015) Microencapsulation of Lactobacillus plantarum (mtcc 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Science and Technology 60: 773-780.
  • Rathore S, Desai PM, Liew CV, Chan LW, Heng PWS (2013) Microencapsulation of microbial cells. Journal of Food Engineering 116: 369-381.
  • Ribeiro MCE, Chaves KS, Gebara C, Infante FNS, Grosso CRF, Gigante ML (2014) Effect of microencapsulation of Lactobacillus acidophilus la-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International 66: 424-431.
  • Rodriguez-Huezo ME, Estrada-Fernandez AG, Garcia-Almendarez BE, Ludena-Urquizo F, Campos-Montiel RG, Pimentel-Gonzalez DJ (2014) Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT-Food Science and Technology 59 (2): 768-773.
  • Rosas-Flores W, Ramos-Ramirez EG, Salazar-Montoya JA (2013) Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum. Carbohydrate Polymers 98: 1011-1017.
  • Shaharuddin S, Muhamad II (2015) Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus nrrl 442: Enhancement of survivability and thermotolerance. Carbohydrate Polymers 119: 173-181.
  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology 62: 47-55.
  • Ünal E, Erginkaya Z (2010) Probiyotik mikroorganizmaların mikroenkapsülasyonu. Gıda 35(4): 297-304.
  • Vuyst LD, Falony G, Leroy F (2008) Probiotics in fermented sausages. Meat Science 80: 75-78.
  • Zhao Q, Mutukumira A, Lee S, Maddox I, Shu Q (2012) Functional properties of free and encapsulated Lactobacillus reuteri DPC16 during and after passage through a simulated gastrointestinal tract. World Journal of Microbiology and Biotechnology 28 (1): 61–70.

Details

Subjects Science
Journal Section Makaleler
Authors

Harun URAN
Kırklareli Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Kayalı Yerleşkesi, 39000, Kırklareli
Türkiye


Hatice ŞANLIDERE ALOĞLU
Kırklareli Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Kayalı Yerleşkesi, 39000, Kırklareli
Türkiye


Bayram ÇETİN
Kırklareli Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Kayalı Yerleşkesi, 39000, Kırklareli
Türkiye

Publication Date August 1, 2017
Published in Issue Year 2017, Volume 30, Issue 2

Cite

Bibtex @review { mediterranean333564, journal = {Mediterranean Agricultural Sciences}, issn = {}, eissn = {2528-9675}, address = {Akdeniz Üniversitesi Ziraat Fakültesi Dumlupınar Bulvarı, 07058 Kampüs ANTALYA}, publisher = {Akdeniz University}, year = {2017}, volume = {30}, pages = {107 - 112}, doi = {}, title = {Microencapsulation of probiotic bacteria}, key = {cite}, author = {Uran, Harun and Şanlıdere Aloğlu, Hatice and Çetin, Bayram} }
APA Uran, H. , Şanlıdere Aloğlu, H. & Çetin, B. (2017). Microencapsulation of probiotic bacteria . Mediterranean Agricultural Sciences , 30 (2) , 107-112 . Retrieved from https://dergipark.org.tr/en/pub/mediterranean/issue/30609/333564
MLA Uran, H. , Şanlıdere Aloğlu, H. , Çetin, B. "Microencapsulation of probiotic bacteria" . Mediterranean Agricultural Sciences 30 (2017 ): 107-112 <https://dergipark.org.tr/en/pub/mediterranean/issue/30609/333564>
Chicago Uran, H. , Şanlıdere Aloğlu, H. , Çetin, B. "Microencapsulation of probiotic bacteria". Mediterranean Agricultural Sciences 30 (2017 ): 107-112
RIS TY - JOUR T1 - Microencapsulation of probiotic bacteria AU - Harun Uran , Hatice Şanlıdere Aloğlu , Bayram Çetin Y1 - 2017 PY - 2017 N1 - DO - T2 - Mediterranean Agricultural Sciences JF - Journal JO - JOR SP - 107 EP - 112 VL - 30 IS - 2 SN - -2528-9675 M3 - UR - Y2 - 2017 ER -
EndNote %0 Mediterranean Agricultural Sciences Microencapsulation of probiotic bacteria %A Harun Uran , Hatice Şanlıdere Aloğlu , Bayram Çetin %T Microencapsulation of probiotic bacteria %D 2017 %J Mediterranean Agricultural Sciences %P -2528-9675 %V 30 %N 2 %R %U
ISNAD Uran, Harun , Şanlıdere Aloğlu, Hatice , Çetin, Bayram . "Microencapsulation of probiotic bacteria". Mediterranean Agricultural Sciences 30 / 2 (August 2017): 107-112 .
AMA Uran H. , Şanlıdere Aloğlu H. , Çetin B. Microencapsulation of probiotic bacteria. Mediterranean Agricultural Sciences. 2017; 30(2): 107-112.
Vancouver Uran H. , Şanlıdere Aloğlu H. , Çetin B. Microencapsulation of probiotic bacteria. Mediterranean Agricultural Sciences. 2017; 30(2): 107-112.
IEEE H. Uran , H. Şanlıdere Aloğlu and B. Çetin , "Microencapsulation of probiotic bacteria", Mediterranean Agricultural Sciences, vol. 30, no. 2, pp. 107-112, Aug. 2017

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.