Research Article
BibTex RIS Cite

Cytotoxic and genotoxic assessment of 2-chloropyridine using Allium cepa ana-telophase and comet test

Year 2019, Volume: 32 Issue: 2, 193 - 199, 01.08.2019
https://doi.org/10.29136/mediterranean.539752

Abstract

2-Chloropyridine (2-CPY) is an important precursor of cosmetics, pesticides and other pharmaceutical products and it is also defined as trace chemical in industrial wastewater as the products of the metabolites of agricultural chemical products and river pollutants. In this study, the effects of 2-CPY on mitotic index (MI), mitotic phase frequencies, chromosome aberrations (CAs) and DNA damage in Allium cepa root cells were investigated with Allium ana-telophase and comet assay. Concentrations of 0.5xEC50 (25 ppm), EC50 (50 ppm) and 2xEC50 (100 ppm) of 2-CPY, Methyl methanesulfonate (MMS-10 ppm, positive control) and distilled water (negative control) were applied to A. cepa roots for 24, 48, 72 and 96 h. 2-CPY showed a cytotoxic effect by reducing root growth and MI, but also showed genotoxic effect by increasing CAs (disturbed ana-telophase, chromosome laggards, stickiness, bridges and polyploidy) and DNA damage at substantial levels. The amount of 2-CPY was shown to be increased statistically in both duration and dose by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 2-CPY should be used carefully and investigated its cyto-genotoxic effects with other toxicology test systems.




References

  • Anuszewska EL, Koziorowska JH (1995) Role of pyridine N-oxide in the cytotoxicity and genotoxicity of chloropyridines. Toxicology in vitro 9(2): 91-94.
  • Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Schiff S, et al (2018) An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 71(3): 191-209.
  • Chauhan LKS, Gupta SK (2005) Combined cytogenetic and ultrastructural effects of substituted urea herbicides and synthetic pyrethroid insecticide on the root meristem cells of Allium cepa. Pesticide Biochemistry and Physiology 82(1): 27-35.
  • Chlopkiewicz B, Wojtowicz M, Marczewska J, Prokopczyk D, Koziorowska J (1993) Contribution of N-oxidation and OH radicals to mutagenesis of 2-chloropyridine in Salmonella typhimurium. Acta Biochimica Polonica 40(1): 57-59.
  • Ciğerci İH, Liman R, Özgül E, Konuk M (2015) Genotoxicity of indium tin oxide by Allium and Comet tests. Cytotechnology 67(1): 157-163.
  • Claxton LD, Dearfield KL, Spanggord RJ, Riccio ES, Mortelmans K (1987) Comparative mutagenicity of halogenated pyridines in the Salmonella typhimurium/mammalian microsome test. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 176(2): 185-198.
  • Cortés-Eslava J, Gómez-Arroyo S, Risueño MC, Testillano PS (2018) The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models. Environmental Pollution 240: 77-86.
  • Dearfield KL, Harrington-Brock K, Doerr CL, Parker L, Moore MM (1993) Genotoxicity of three pyridine compounds to L5178Y mouse lymphoma cells. Mutation Research Letters 301(1): 57-63.
  • El-Ghamery AA, El-Nahas AL, Mansour MM (2000) The action of atrazine herbicide as an indicator of cell division on chromosomes and nucleic acid content in root meristems of Allium cepa and Vicia faba. Cytologia 65: 277-287.
  • El-Ghamery AA, Mousa MA (2017) Investigation on the effect of benzyladenine on the germination, radicle growth and meristematic cells of Nigella sativa L. and Allium cepa L. Annals of Agricultural Sciences 62(1): 11-21.
  • Evseeva TI, Stanislav A, Geras’kin I, Shuktomova I (2005) Genotoxicity and toxicity assay of water sampled from a radium production industry storage cell territory by means of Allium-Test. Journal of Environmental Radioactivity 68: 235-248.
  • Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology 88: 252-259.
  • Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102(1): 99-112.
  • Fiskesjö G, Levan A (1993) Evaluation of the first ten MEIC chemicals in the Allium test. Atla 21: 139-149.
  • Fiskesjӧ G (1988) The Allium test—an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research 197: 243-260.
  • Fusconi A, Repetto O, Bona E, Massa N, Gallo C, Dumas-Gaudot E, Berta G (2006) Effect of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environmental and Experimental Botany 58: 253-260.
  • Gehring PJ, Torkelson TR, Oyen F (1967) A comparison of the lethality of chlorinated pyridines and a study of the acute toxicity of 2-chloropyridine. Toxicology and Applied Pharmacology 11(2): 361-371.
  • Goe GL (1982) Pyridine and pyridine derivatives. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. (M. Grayson and D. Eckroth, Eds.), Vol. 19, p. 470. John Wiley and Sons, New York.
  • Grant WF (1982) Chromosome aberration assays in Allium. A report of the U.S. environmental protection agency gene‐tox program. Mutation Research 99: 273-291.
  • Guardiola A, Ventura F, Matia L, Caixach J, and Rivera J (1991) Gas chromatographic-mass spectrometric characterization of volatile organic compounds in Barcelona tap water. Journal of Chromatography 562: 481-492.
  • Gupta K, Mishra K, Srivastava S, Kumar A (2018) Cytotoxic Assessment of Chromium and Arsenic Using Chromosomal Behavior of Root Meristem in Allium cepa L. Bulletin of Environmental Contamination and Toxicology 100(6): 803-808.
  • Hendricks AJ, Maas-Diepeveen JL, Noordsij A, Van der Gaag MA (1994) Monitoring response of XAD-concentrated water in the Rhine delta: A major part of the toxic compounds remains unidentified. Water Research 28: 581-598.
  • Hidalgo A, Gonzales-Reyes JA, Navas P, GarcIa-Herdugo G (1989) Abnormal mitosis and growth inhibition in Allium cepa roots induced by propham and chlorpropham. Cytobiologie 57: 7-14.
  • Jiang Z, Qin R, Zhang H, Zou J, Shi Q, Wang J, Liu D, et al (2014) Determination of Pb genotoxic effects in Allium cepa root cells by fluorescent probe, microtubular immunofluorescence and comet assay. Plant and Soil 383(1-2): 357-372.
  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment 407: 5243-5246.
  • Küçük D, Liman R (2018) Cytogenetic and genotoxic effects of 2-chlorophenol on Allium cepa L. root meristem cells. Environmental Science and Pollution Research 25: 36117-36123.
  • Kwasniewska J, Nałęcz-Jawecki G, Skrzypczak A, Płaza GA, Matejczyk M (2012) An assessment of the genotoxic effects of landfill leachates using bacterial and plant tests. Ecotoxicology and Environmental Safety 75: 55-62.
  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutation Research-Reviews in Mutation Research 682(1): 71-81.
  • Liman R, Cigerci IH, Akyıl D, Eren Y, Konuk M (2011) Determination of genotoxicity of fenaminosulf by Allium and Comet Tests. Pesticide Biochemistry and Physiology 99: 61-64.
  • Liman R, Ciğerci IH, Öztürk NS (2015) Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pesticide Biochemistry and Physiology 118: 38-42.
  • Liman R, Acikbas Y, Ciğerci IH (2019) Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests. Ecotoxicology and Environmental Safety 168: 408-414.
  • Livanos P, Galatis B, Quader H, Apostolakos P (2012) Disturbance of reactive oxygen species homeostasis induces a typical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton (Hoboken) 69: 1-21.
  • Luo LZ, Werner KM, Gollin SM and Saunders WS (2004) Cigarette smoke induces anaphase bridges and genomic imbalances in normal cells. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 554(1): 375–385.
  • Ma TH, Cabrera GL, Owens E (2005) Genotoxic agentsdetected by plant bioassays. Reviews on Environmental Health 20(1): 1-14.
  • Melcher RG, Bouyoucos SA (1990) Membrane interface for automatic extraction and liquid chromatographic determination of trace organics in aqueous streams. Process Control and Quality 1: 63-74.
  • Palmieri MJ, Andrade-Vieira LF, Trento MVC, Eleutério MWF, Luber J, Davide LC et al (2016) Cytogenotoxic effects of spent pot liner (SPL) and its main components on human leukocytes and meristematic cells of Allium cepa. Water Air and Soil Pollution 227: 1-10.
  • Rangaswamy V, Shanthamurthy KB, Arekal GD (1981) Cytological effects of industrial effluent on somatic cells of Allium cepa. In: Manna GK, Sinha V (eds) Perspective of cytology and genetics. Hind Asia Publication Delhi 3: 303–308.
  • Rank J, Nielsen MH (1994) Evaluation of the Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutation Research-Environmental Mutagenesis and Related Subjects 312(1): 17-24.
  • Roberts GK (2017) NTP Technical Report on the Toxicity Studies of o-Chloropyridine (CAS NO. 109- 09-1) Administered Dermally and in Drinking Water to F344/N Rats and B6C3F1/N Mice, National Toxicology Program Toxicity Report Series Number 83: 1-133.
  • Rodriguez-Ruiz A, Asensio V, Zaldibar B, Soto M, Marigómez I (2014) Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values. Environmental Science and Pollution Research 21(16): 9689-708.
  • Saxena PN, Chauhan LKS, Gupta SK (2005) Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: spectroscopic basis of chromosome damage. Toxicology 216(2-3): 244-252.
  • Seth CS, Misra V, Chauhan LKS, Singh RR (2008) Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicology and Environmental safety 71(3): 711-716.
  • Shimizu S, Watanabe N, Kataoka T, Shoji T, Abe N, Morishita S, Ichimura H (2000) Pyridine and Pyridine Derivatives. Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a22_399.
  • Silveira GL, Lima MGF, dos Reis GB, Palmieri MJ, Andrade-Vieria LF (2017) Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178: 359-367.
  • Singh D, Roy BK (2017) Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiologiae Plantarum 39(4): 92-102.
  • Skoutelis C, Antonopoulou M, Konstantinou I, Vlastos D, Papadaki M (2017) Photodegradation of 2-chloropyridine in aqueous solution: Reaction pathways and genotoxicity of intermediate products. Journal of Hazardous Materials 321: 753-763.
  • Soliman MI, Ghoneam GT (2004) The mutagenic potentialities of some herbicides using Vicia faba as a biological system. Biotechnology 3: 140-154.
  • Stapleton DR, Vlastos D, Skoutelis CG, Papadaki MI (2008) Photolytic and photocatalytic diminution and preliminary genotoxicity studies of 2-chloropyridine. Journal of Advanced Oxidation Technologies 11(3): 486-500.
  • Sudhakar R, Gowda N, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologıa 66: 235-239.
  • Teixeira RDO, Camparoto ML, Mantovani MS, Vicentini VEP (2003) Assessment of two medicinal plants, Psidium guajava L. and Achillea millefolium L., in vitro and in vivo assays. Genetics and Molecular Biology 26(4): 551-555.
  • Türkoğlu Ş (2012) Determination of genotoxic effects of chlorfenvinphos and fenbuconazole in Allium cepa root cells by mitotic activity, chromosome aberration, DNA content, and comet assay. Pesticide Biochemistry and Physiology 103(3): 224-230.
  • Türkoğlu Ş (2015) Evaluation of genotoxic effects of five flavour enhancers (glutamates) on the root meristem cells of Allium cepa. Toxicology and Industrial Health 31(9): 792-801.
  • Ventura L, Giovannini A, Savio M, Donà M, Macovei A, Buttafava A, Balestrazzi A, et al (2013) Single cell gel electrophoresis (comet) assay with plants: research on DNA repair and ecogenotoxicity testing. Chemosphere 92(1): 1-9.
  • Verma S, Srivastava A (2018) Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L., A biomarker based study. Chemosphere 206: 248-254.
  • Vlastos D, Skoutelis CG, Theodoridis IT, Stapleton DR, Papadaki MI (2010) Genotoxicity study of photolytically treated 2-chloropyridine aqueous solutions. Journal of Hazardous Materials 177(1-3): 892-898.
  • Webster PL, Macleod RD (1996) The root apical meristem and its magrin, In: Waishel Y, Eshel A, Kafkafi U (Eds.) Plant roots. The hidden half (second ed.), Marcel Dekker, New York, pp. 51–76.
  • Wu CH, Huang HJ (1998) Toxicity and anaerobic biodegradability of pyridine and its derivatives under sulfidogenic conditions. Chemosphere 36(10): 2345-2357.
  • Zheng QZ, Zhang XM, Xu Y, Cheng K, Jiao QC, Zhu HL (2010) Synthesis, biological evaluation, and molecular docking studies of 2-chloropyridine derivatives possessing 1, 3, 4-oxadiazole moiety as potential antitumor agents. Bioorganic and Medicinal Chemistry 18(22): 7836-7841.
  • Zimmermann FK, Henning JH, Scheel I, Oehler M (1986) Genetic and anti-tubulin effects induced by pyridine derivatives. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 163(1): 23-31.

2-Kloropiridin’in Allium cepa ana-telofaz ve komet testi kullanılarak sitotoksik ve genotoksik değerlendirilmesi

Year 2019, Volume: 32 Issue: 2, 193 - 199, 01.08.2019
https://doi.org/10.29136/mediterranean.539752

Abstract

2-Kloropiridin (2-KP) kozmetiklerin,
böcek ilaçlarının ve diğer farmasötik ürünlerin önemli bir öncüsüdür ve aynı
zamanda endüstriyel atık sulardaki tarımsal kimyasal ürünlerin ve nehir
kirleticilerin metabolitlerinin ürünleri olarak iz kimyasal olarak da
tanımlanmaktadır. Bu çalışmada,
Allium
cepa
kök hücrelerinde 2-KP'nin mitotik indeks (MI), mitotik faz frekansları,
kromozom sapmaları (KA) ve DNA hasarı üzerine etkileri Allium ana-telofaz ve
komet testi ile araştırılmıştır.
A. cepa
köklerine 0.5xEC
50 (25 ppm), EC50 (50 ppm) ve 2xEC50
(100 ppm) 2-KP, Metil metansülfonat (MMS-10 ppm, pozitif kontrol) ve distile su
(negatif kontrol) konsantrasyonları
A.
cepa
köklerine 24, 48, 72 ve 96 saat boyunca uygulandı. 2-KP, kök
büyümesini ve MI'yi azaltarak sitotoksik bir etki göstermişken KA'ları
(bozulmuş ana-telofaz, kromozom kalgınları, yapışkanlık, köprü ve poliploidi) ve
DNA hasarını önemli seviyelerde arttırarak genotoksik etki gösterdi. Sıvı
kromatografi tandem kütle spektrometresi (LC-MS/MS) ile 2-KP miktarının hem
süre hem de doza bağlı istatistiksel olarak arttığı gösterilmiştir. 2-KP
dikkatli kullanılmalı ve sito-genotoksik etkilerini diğer toksikoloji test
sistemleri ile araştırmalıdır.



References

  • Anuszewska EL, Koziorowska JH (1995) Role of pyridine N-oxide in the cytotoxicity and genotoxicity of chloropyridines. Toxicology in vitro 9(2): 91-94.
  • Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Schiff S, et al (2018) An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 71(3): 191-209.
  • Chauhan LKS, Gupta SK (2005) Combined cytogenetic and ultrastructural effects of substituted urea herbicides and synthetic pyrethroid insecticide on the root meristem cells of Allium cepa. Pesticide Biochemistry and Physiology 82(1): 27-35.
  • Chlopkiewicz B, Wojtowicz M, Marczewska J, Prokopczyk D, Koziorowska J (1993) Contribution of N-oxidation and OH radicals to mutagenesis of 2-chloropyridine in Salmonella typhimurium. Acta Biochimica Polonica 40(1): 57-59.
  • Ciğerci İH, Liman R, Özgül E, Konuk M (2015) Genotoxicity of indium tin oxide by Allium and Comet tests. Cytotechnology 67(1): 157-163.
  • Claxton LD, Dearfield KL, Spanggord RJ, Riccio ES, Mortelmans K (1987) Comparative mutagenicity of halogenated pyridines in the Salmonella typhimurium/mammalian microsome test. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 176(2): 185-198.
  • Cortés-Eslava J, Gómez-Arroyo S, Risueño MC, Testillano PS (2018) The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models. Environmental Pollution 240: 77-86.
  • Dearfield KL, Harrington-Brock K, Doerr CL, Parker L, Moore MM (1993) Genotoxicity of three pyridine compounds to L5178Y mouse lymphoma cells. Mutation Research Letters 301(1): 57-63.
  • El-Ghamery AA, El-Nahas AL, Mansour MM (2000) The action of atrazine herbicide as an indicator of cell division on chromosomes and nucleic acid content in root meristems of Allium cepa and Vicia faba. Cytologia 65: 277-287.
  • El-Ghamery AA, Mousa MA (2017) Investigation on the effect of benzyladenine on the germination, radicle growth and meristematic cells of Nigella sativa L. and Allium cepa L. Annals of Agricultural Sciences 62(1): 11-21.
  • Evseeva TI, Stanislav A, Geras’kin I, Shuktomova I (2005) Genotoxicity and toxicity assay of water sampled from a radium production industry storage cell territory by means of Allium-Test. Journal of Environmental Radioactivity 68: 235-248.
  • Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology 88: 252-259.
  • Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102(1): 99-112.
  • Fiskesjö G, Levan A (1993) Evaluation of the first ten MEIC chemicals in the Allium test. Atla 21: 139-149.
  • Fiskesjӧ G (1988) The Allium test—an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research 197: 243-260.
  • Fusconi A, Repetto O, Bona E, Massa N, Gallo C, Dumas-Gaudot E, Berta G (2006) Effect of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environmental and Experimental Botany 58: 253-260.
  • Gehring PJ, Torkelson TR, Oyen F (1967) A comparison of the lethality of chlorinated pyridines and a study of the acute toxicity of 2-chloropyridine. Toxicology and Applied Pharmacology 11(2): 361-371.
  • Goe GL (1982) Pyridine and pyridine derivatives. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. (M. Grayson and D. Eckroth, Eds.), Vol. 19, p. 470. John Wiley and Sons, New York.
  • Grant WF (1982) Chromosome aberration assays in Allium. A report of the U.S. environmental protection agency gene‐tox program. Mutation Research 99: 273-291.
  • Guardiola A, Ventura F, Matia L, Caixach J, and Rivera J (1991) Gas chromatographic-mass spectrometric characterization of volatile organic compounds in Barcelona tap water. Journal of Chromatography 562: 481-492.
  • Gupta K, Mishra K, Srivastava S, Kumar A (2018) Cytotoxic Assessment of Chromium and Arsenic Using Chromosomal Behavior of Root Meristem in Allium cepa L. Bulletin of Environmental Contamination and Toxicology 100(6): 803-808.
  • Hendricks AJ, Maas-Diepeveen JL, Noordsij A, Van der Gaag MA (1994) Monitoring response of XAD-concentrated water in the Rhine delta: A major part of the toxic compounds remains unidentified. Water Research 28: 581-598.
  • Hidalgo A, Gonzales-Reyes JA, Navas P, GarcIa-Herdugo G (1989) Abnormal mitosis and growth inhibition in Allium cepa roots induced by propham and chlorpropham. Cytobiologie 57: 7-14.
  • Jiang Z, Qin R, Zhang H, Zou J, Shi Q, Wang J, Liu D, et al (2014) Determination of Pb genotoxic effects in Allium cepa root cells by fluorescent probe, microtubular immunofluorescence and comet assay. Plant and Soil 383(1-2): 357-372.
  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment 407: 5243-5246.
  • Küçük D, Liman R (2018) Cytogenetic and genotoxic effects of 2-chlorophenol on Allium cepa L. root meristem cells. Environmental Science and Pollution Research 25: 36117-36123.
  • Kwasniewska J, Nałęcz-Jawecki G, Skrzypczak A, Płaza GA, Matejczyk M (2012) An assessment of the genotoxic effects of landfill leachates using bacterial and plant tests. Ecotoxicology and Environmental Safety 75: 55-62.
  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutation Research-Reviews in Mutation Research 682(1): 71-81.
  • Liman R, Cigerci IH, Akyıl D, Eren Y, Konuk M (2011) Determination of genotoxicity of fenaminosulf by Allium and Comet Tests. Pesticide Biochemistry and Physiology 99: 61-64.
  • Liman R, Ciğerci IH, Öztürk NS (2015) Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pesticide Biochemistry and Physiology 118: 38-42.
  • Liman R, Acikbas Y, Ciğerci IH (2019) Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests. Ecotoxicology and Environmental Safety 168: 408-414.
  • Livanos P, Galatis B, Quader H, Apostolakos P (2012) Disturbance of reactive oxygen species homeostasis induces a typical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton (Hoboken) 69: 1-21.
  • Luo LZ, Werner KM, Gollin SM and Saunders WS (2004) Cigarette smoke induces anaphase bridges and genomic imbalances in normal cells. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 554(1): 375–385.
  • Ma TH, Cabrera GL, Owens E (2005) Genotoxic agentsdetected by plant bioassays. Reviews on Environmental Health 20(1): 1-14.
  • Melcher RG, Bouyoucos SA (1990) Membrane interface for automatic extraction and liquid chromatographic determination of trace organics in aqueous streams. Process Control and Quality 1: 63-74.
  • Palmieri MJ, Andrade-Vieira LF, Trento MVC, Eleutério MWF, Luber J, Davide LC et al (2016) Cytogenotoxic effects of spent pot liner (SPL) and its main components on human leukocytes and meristematic cells of Allium cepa. Water Air and Soil Pollution 227: 1-10.
  • Rangaswamy V, Shanthamurthy KB, Arekal GD (1981) Cytological effects of industrial effluent on somatic cells of Allium cepa. In: Manna GK, Sinha V (eds) Perspective of cytology and genetics. Hind Asia Publication Delhi 3: 303–308.
  • Rank J, Nielsen MH (1994) Evaluation of the Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutation Research-Environmental Mutagenesis and Related Subjects 312(1): 17-24.
  • Roberts GK (2017) NTP Technical Report on the Toxicity Studies of o-Chloropyridine (CAS NO. 109- 09-1) Administered Dermally and in Drinking Water to F344/N Rats and B6C3F1/N Mice, National Toxicology Program Toxicity Report Series Number 83: 1-133.
  • Rodriguez-Ruiz A, Asensio V, Zaldibar B, Soto M, Marigómez I (2014) Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values. Environmental Science and Pollution Research 21(16): 9689-708.
  • Saxena PN, Chauhan LKS, Gupta SK (2005) Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: spectroscopic basis of chromosome damage. Toxicology 216(2-3): 244-252.
  • Seth CS, Misra V, Chauhan LKS, Singh RR (2008) Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicology and Environmental safety 71(3): 711-716.
  • Shimizu S, Watanabe N, Kataoka T, Shoji T, Abe N, Morishita S, Ichimura H (2000) Pyridine and Pyridine Derivatives. Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a22_399.
  • Silveira GL, Lima MGF, dos Reis GB, Palmieri MJ, Andrade-Vieria LF (2017) Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178: 359-367.
  • Singh D, Roy BK (2017) Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiologiae Plantarum 39(4): 92-102.
  • Skoutelis C, Antonopoulou M, Konstantinou I, Vlastos D, Papadaki M (2017) Photodegradation of 2-chloropyridine in aqueous solution: Reaction pathways and genotoxicity of intermediate products. Journal of Hazardous Materials 321: 753-763.
  • Soliman MI, Ghoneam GT (2004) The mutagenic potentialities of some herbicides using Vicia faba as a biological system. Biotechnology 3: 140-154.
  • Stapleton DR, Vlastos D, Skoutelis CG, Papadaki MI (2008) Photolytic and photocatalytic diminution and preliminary genotoxicity studies of 2-chloropyridine. Journal of Advanced Oxidation Technologies 11(3): 486-500.
  • Sudhakar R, Gowda N, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologıa 66: 235-239.
  • Teixeira RDO, Camparoto ML, Mantovani MS, Vicentini VEP (2003) Assessment of two medicinal plants, Psidium guajava L. and Achillea millefolium L., in vitro and in vivo assays. Genetics and Molecular Biology 26(4): 551-555.
  • Türkoğlu Ş (2012) Determination of genotoxic effects of chlorfenvinphos and fenbuconazole in Allium cepa root cells by mitotic activity, chromosome aberration, DNA content, and comet assay. Pesticide Biochemistry and Physiology 103(3): 224-230.
  • Türkoğlu Ş (2015) Evaluation of genotoxic effects of five flavour enhancers (glutamates) on the root meristem cells of Allium cepa. Toxicology and Industrial Health 31(9): 792-801.
  • Ventura L, Giovannini A, Savio M, Donà M, Macovei A, Buttafava A, Balestrazzi A, et al (2013) Single cell gel electrophoresis (comet) assay with plants: research on DNA repair and ecogenotoxicity testing. Chemosphere 92(1): 1-9.
  • Verma S, Srivastava A (2018) Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L., A biomarker based study. Chemosphere 206: 248-254.
  • Vlastos D, Skoutelis CG, Theodoridis IT, Stapleton DR, Papadaki MI (2010) Genotoxicity study of photolytically treated 2-chloropyridine aqueous solutions. Journal of Hazardous Materials 177(1-3): 892-898.
  • Webster PL, Macleod RD (1996) The root apical meristem and its magrin, In: Waishel Y, Eshel A, Kafkafi U (Eds.) Plant roots. The hidden half (second ed.), Marcel Dekker, New York, pp. 51–76.
  • Wu CH, Huang HJ (1998) Toxicity and anaerobic biodegradability of pyridine and its derivatives under sulfidogenic conditions. Chemosphere 36(10): 2345-2357.
  • Zheng QZ, Zhang XM, Xu Y, Cheng K, Jiao QC, Zhu HL (2010) Synthesis, biological evaluation, and molecular docking studies of 2-chloropyridine derivatives possessing 1, 3, 4-oxadiazole moiety as potential antitumor agents. Bioorganic and Medicinal Chemistry 18(22): 7836-7841.
  • Zimmermann FK, Henning JH, Scheel I, Oehler M (1986) Genetic and anti-tubulin effects induced by pyridine derivatives. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 163(1): 23-31.
There are 59 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Güller Pirdal This is me 0000-0003-4542-3704

Recep Liman 0000-0002-7944-4952

Publication Date August 1, 2019
Submission Date March 14, 2019
Published in Issue Year 2019 Volume: 32 Issue: 2

Cite

APA Pirdal, G., & Liman, R. (2019). Cytotoxic and genotoxic assessment of 2-chloropyridine using Allium cepa ana-telophase and comet test. Mediterranean Agricultural Sciences, 32(2), 193-199. https://doi.org/10.29136/mediterranean.539752
AMA Pirdal G, Liman R. Cytotoxic and genotoxic assessment of 2-chloropyridine using Allium cepa ana-telophase and comet test. Mediterranean Agricultural Sciences. August 2019;32(2):193-199. doi:10.29136/mediterranean.539752
Chicago Pirdal, Güller, and Recep Liman. “Cytotoxic and Genotoxic Assessment of 2-Chloropyridine Using Allium Cepa Ana-Telophase and Comet Test”. Mediterranean Agricultural Sciences 32, no. 2 (August 2019): 193-99. https://doi.org/10.29136/mediterranean.539752.
EndNote Pirdal G, Liman R (August 1, 2019) Cytotoxic and genotoxic assessment of 2-chloropyridine using Allium cepa ana-telophase and comet test. Mediterranean Agricultural Sciences 32 2 193–199.
IEEE G. Pirdal and R. Liman, “Cytotoxic and genotoxic assessment of 2-chloropyridine using Allium cepa ana-telophase and comet test”, Mediterranean Agricultural Sciences, vol. 32, no. 2, pp. 193–199, 2019, doi: 10.29136/mediterranean.539752.
ISNAD Pirdal, Güller - Liman, Recep. “Cytotoxic and Genotoxic Assessment of 2-Chloropyridine Using Allium Cepa Ana-Telophase and Comet Test”. Mediterranean Agricultural Sciences 32/2 (August 2019), 193-199. https://doi.org/10.29136/mediterranean.539752.
JAMA Pirdal G, Liman R. Cytotoxic and genotoxic assessment of 2-chloropyridine using Allium cepa ana-telophase and comet test. Mediterranean Agricultural Sciences. 2019;32:193–199.
MLA Pirdal, Güller and Recep Liman. “Cytotoxic and Genotoxic Assessment of 2-Chloropyridine Using Allium Cepa Ana-Telophase and Comet Test”. Mediterranean Agricultural Sciences, vol. 32, no. 2, 2019, pp. 193-9, doi:10.29136/mediterranean.539752.
Vancouver Pirdal G, Liman R. Cytotoxic and genotoxic assessment of 2-chloropyridine using Allium cepa ana-telophase and comet test. Mediterranean Agricultural Sciences. 2019;32(2):193-9.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.