Research Article
BibTex RIS Cite

Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species

Year 2022, Volume: 35 Issue: 3, 115 - 120, 02.12.2022
https://doi.org/10.29136/mediterranean.1114313

Abstract

References

  • Anđela Martinović M, Cavoski I (2020) The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds. Food Chemistry 318: 26549.
  • Baby B, Antony P, Vijayan R (2018) Antioxidant and anticancer properties of berries. Critical Reviews in Food Science and Nutrition 58: 2491-2507.
  • Bayram HM, Ozturkcan SA (2020) Bioactive components and biological properties of cornelian cherry: A comprehensive review. Journal of Functional Foods 75: 104252.
  • Bijelić SM, Gološin BR, Todorović JIN, Cerović SB, Popović BM (2011) Physicochemical fruit characteristics of cornelian cherry (Cornus mas L.) genotypes from Serbia. Hortscience 46: 849-853.
  • Boland M, Golding M, Singh H (2014) Food structures, digestion and health. Cambridge, MA: Academic Press is an imprint of Elsevier, pp. 513. ISBN: 978-0-12-404610-8.
  • Brito C, Bertotti T, Primitivo MJ, Neves M, Pires LC, Cruz PF, Martins PAT, Rodrigues AC, Moreno MJ, Brito RMM, Campos MJ, Vaz DC, Fernanda PM, Lidon F, Reboredo F, Ribeiro VS (2021) Corema album spp: edible wild crowberries with a high content in minerals and organic acids. Food Chemistry 345: 128732.
  • Cetkovská J, Diviš P, Vespalcová M, Pořízka J, Řezníček V (2013) Basic nutritional properties of cornelian cherry (Cornus mas L.) cultivars grown in the Czech Republic. Acta Alimentaria 44: 549-557.
  • Cindrić IJ, Zeiner M, Krpetić M, Stingeder G (2012) ICP-AES determination of minor and major elements in Cornelian cherry (Cornus mas L.) after microwave assisted digestion. Microchemical Journal 105: 72-76.
  • Dadkhah N, Shirani M, Etemadifar S, Mirtalebi M (2016) The effect of Cornus mas in preventing recurrent urinary tract infections in women:A randomized controlled trial. Advanced Herbal Medicine 2: 39-46.
  • Demir D, Sayinci B, Sümbül A, Yaman M, Yildiz E, Çetin N, Karakaya O, Ercişli S (2020) Bioactive compounds and physical attributes of Cornus mas genotypes through multivariate approaches. Folia Horticulturae 32: 1-14.
  • Kalyoncu İH, Ersoy N, Yılmaz M (2009) Physico-chemical and nutritional properties of cornelian cherry fruits (Cornus mas L.) Grown in Turkey. Asian Journal of Chemistry 21: 6555-6561.
  • Khoja KK, Aslam MF, Sharp PA, Latunde-Dada GO (2021) In vitro bioaccessibility and bioavailability of iron from fenugreek, baobab and moringa. Food Chemistry 335: 127671.
  • Khouzam RB, Pohl P, Lobinski R (2011) Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta 86: 425-428.
  • Koubová E, Sumczynski D, Šenkárová L, Orsavová J, Fišera M (2018) Dietary intakes of minerals, essential and toxic trace elements for adults from Eragrostis tef L.: A Nutritional Assessment. Nutrients 10: 479.
  • Kökosmanlı M, Keleş F (2000) The possibilities of cornelian cherry fruits grown in Erzurum by processing marmalade and pulp products. Gıda 25: 289-298.
  • Lakshmi AJ, Kaul P (2011) Nutritional potential, bioaccessibility of minerals and functionality of watermelon (Citrullus vulgaris) seeds. LWT - Food Science and Technology 44: 1821-1826.
  • Miller D, Schricker B, Rasmussen R, Van Campen DV (1981) An in vitro method for estimation of iron availability from meals. The American Journal of Clinical Nutrition 34: 2248-2256.
  • Mitic S, Stojanovic B, Tosic S, Pavlovic A, Kostic D, Mitic M (2019) Comparative study on minerals in peel and pulp of peach (Prunus persica L.) fruit. Revista de Chimie (Bucharest) 70: 2281-2285.
  • Montiel-Sánchez M, García-Cayuela T, Gómez-Maqueo A, García HS, Cano MP (2021) In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chemistry 342: 128087.
  • Ochmian I, Oszmiański J, Lachowicz S, Krupa-Małkiewicz M (2019) Rootstock effect on physico-chemical properties and content of bioactive compounds of four cultivars Cornelian cherry fruits. Scientia Horticulturae 256: 108588.
  • Odabaş-Serin Z, Bakır O (2019) Some chemical, nutritional and mineral properties of dried juniper (Juniperus drupacea L.) berries growing in Turkey. Applied Ecology and Environmental Research 17: 8171-8178.
  • Olędzka A, Cichocka K, Woliński K, Melzig MF, Czerwińska ME (2022) Potentially Bio-Accessible Metabolites from an Extract of Cornus mas Fruit after Gastrointestinal Digestion In Vitro and Gut Microbiota Ex Vivo Treatment. Nutrients 14(11): 2287.
  • Promchan J, Shiowatana JA (2005) Dynamic continuous-flow dialysis system with on-line electrothermal atomic-absorption spectrometric and pH measurements for in-vitro determination of iron bioavailability by simulated gastrointestinal digestion. Analytical and Bioanalytical Chemistry 382: 360-1367.
  • Rousseau S, Kyomugasho C, Celus M, Hendrickx MEG, Grauwet T (2020) Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Critical Reviews in Food Science and Nutrition 60: 826-843.
  • Savaş E, Tavşanlı H, Çatalkaya G, Çapanoğlu E, Tamer CE (2020) The antimicrobial and antioxidant properties of garagurt: Traditional Cornelian cherry (Cornus mas) marmalade. Quality Assurance and Safety of Crops and Foods 12: 12-23.
  • Sozański T, Kucharska A, Szumny A, Magdalan J, Bielska K, Merwid Ląd A (2014) The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARα activation in hypercholesterolemic rabbits. Phytomedicine 21: 1774-1784.
  • Stanković MS, Topuzović MD (2012) In vitro antioxidant activity of extracts from leaves and fruits of common dogwood (Cornus sanguinea L.). Acta Botanica Gallica: Botany Letters 159: 79-83.
  • Tenuta MC, Deguin B, Loizzo MR, Cuyamendous C, Bonesi M, Sicari V, Trabalzini, Mitaine-Offer A-C, Xiao J, Tundis R (2022) An Overview of Traditional Uses, Phytochemical Compositions and Biological Activities of Edible Fruits of European and Asian Cornus Species. Foods 11: 1240.
  • Truba J, Stanisławska I, Walasek M, Wieczorkowska W, Woliński K, Buchholz T, Melzig MF, Czerwińska ME (2020) Inhibition of digestive enzymes and antioxidant activity of extracts from fruits of Cornus alba, Cornus sanguinea subsp. hungarica and Cornus florida -A comparative study. Plants 9: 122.
  • TUIK Turkish Statistical Institute (TURKSTAT) (2022) Crop production statistics. http://tuik.gov.tr. Accessed 27 April, 2022.
  • Xiang QY, Thomas DT, Zhang W, Manchester SR, Murrell Z (2006) Species level phylogeny of the genus Cornus (Cornaceae) based on molecular and morphological evidence—implications for taxonomy and Tertiary intercontinental migration. Taxon 55: 9-30.
  • Vitali D, Vedrina Dragojevic I, Šebecic B (2009) Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chemistry 114: 1462-1469.
  • Yilmaz KU, Ercisli S, Zengin Y, Sengul M, Kafkas EY (2009) Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry 114: 408-412.

Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species

Year 2022, Volume: 35 Issue: 3, 115 - 120, 02.12.2022
https://doi.org/10.29136/mediterranean.1114313

Abstract

In this study, the content and bioaccessibility of minerals were investigated in four different cornelian cherry (Cornus mas L.) and one common dogwood (Cornus sanguinea L.) genotypes grown in Bursa, Turkey. Mineral content or bioaccessibility was determined using inductively-coupled plasma optical emission spectrometry or in vitro artificial gastrointestinal system, respectively. Results revealed that the common dogwood contained significantly greater amounts of minerals, particularly calcium and iron, compared with cornelian cherry genotypes. However, bioaccessibility of calcium or iron was greater in cornelian cherry genotypes (on average 90% or 25%, respectively) compared with that of common dogwood (13.72% or 4.48%, respectively). Bioaccessibility rates of potassium, magnesium and copper were over 50% in all genotypes. Among the cornelian cherry genotypes, G2 contained the highest amount of minerals, except for copper, and the highest amount of bioaccessible minerals. Although the mineral contents were different, amounts of bioaccessible minerals were comparable in both species due to the difference in bioaccessibility rates. In conclusion, the present study shows that fruits with rich mineral contents do not necessarily have high nutritional value due to lower bioaccessibility rates, and suggests that in vitro bioaccessibility studies are useful tools in the determination of the nutritional value of foods.

References

  • Anđela Martinović M, Cavoski I (2020) The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds. Food Chemistry 318: 26549.
  • Baby B, Antony P, Vijayan R (2018) Antioxidant and anticancer properties of berries. Critical Reviews in Food Science and Nutrition 58: 2491-2507.
  • Bayram HM, Ozturkcan SA (2020) Bioactive components and biological properties of cornelian cherry: A comprehensive review. Journal of Functional Foods 75: 104252.
  • Bijelić SM, Gološin BR, Todorović JIN, Cerović SB, Popović BM (2011) Physicochemical fruit characteristics of cornelian cherry (Cornus mas L.) genotypes from Serbia. Hortscience 46: 849-853.
  • Boland M, Golding M, Singh H (2014) Food structures, digestion and health. Cambridge, MA: Academic Press is an imprint of Elsevier, pp. 513. ISBN: 978-0-12-404610-8.
  • Brito C, Bertotti T, Primitivo MJ, Neves M, Pires LC, Cruz PF, Martins PAT, Rodrigues AC, Moreno MJ, Brito RMM, Campos MJ, Vaz DC, Fernanda PM, Lidon F, Reboredo F, Ribeiro VS (2021) Corema album spp: edible wild crowberries with a high content in minerals and organic acids. Food Chemistry 345: 128732.
  • Cetkovská J, Diviš P, Vespalcová M, Pořízka J, Řezníček V (2013) Basic nutritional properties of cornelian cherry (Cornus mas L.) cultivars grown in the Czech Republic. Acta Alimentaria 44: 549-557.
  • Cindrić IJ, Zeiner M, Krpetić M, Stingeder G (2012) ICP-AES determination of minor and major elements in Cornelian cherry (Cornus mas L.) after microwave assisted digestion. Microchemical Journal 105: 72-76.
  • Dadkhah N, Shirani M, Etemadifar S, Mirtalebi M (2016) The effect of Cornus mas in preventing recurrent urinary tract infections in women:A randomized controlled trial. Advanced Herbal Medicine 2: 39-46.
  • Demir D, Sayinci B, Sümbül A, Yaman M, Yildiz E, Çetin N, Karakaya O, Ercişli S (2020) Bioactive compounds and physical attributes of Cornus mas genotypes through multivariate approaches. Folia Horticulturae 32: 1-14.
  • Kalyoncu İH, Ersoy N, Yılmaz M (2009) Physico-chemical and nutritional properties of cornelian cherry fruits (Cornus mas L.) Grown in Turkey. Asian Journal of Chemistry 21: 6555-6561.
  • Khoja KK, Aslam MF, Sharp PA, Latunde-Dada GO (2021) In vitro bioaccessibility and bioavailability of iron from fenugreek, baobab and moringa. Food Chemistry 335: 127671.
  • Khouzam RB, Pohl P, Lobinski R (2011) Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta 86: 425-428.
  • Koubová E, Sumczynski D, Šenkárová L, Orsavová J, Fišera M (2018) Dietary intakes of minerals, essential and toxic trace elements for adults from Eragrostis tef L.: A Nutritional Assessment. Nutrients 10: 479.
  • Kökosmanlı M, Keleş F (2000) The possibilities of cornelian cherry fruits grown in Erzurum by processing marmalade and pulp products. Gıda 25: 289-298.
  • Lakshmi AJ, Kaul P (2011) Nutritional potential, bioaccessibility of minerals and functionality of watermelon (Citrullus vulgaris) seeds. LWT - Food Science and Technology 44: 1821-1826.
  • Miller D, Schricker B, Rasmussen R, Van Campen DV (1981) An in vitro method for estimation of iron availability from meals. The American Journal of Clinical Nutrition 34: 2248-2256.
  • Mitic S, Stojanovic B, Tosic S, Pavlovic A, Kostic D, Mitic M (2019) Comparative study on minerals in peel and pulp of peach (Prunus persica L.) fruit. Revista de Chimie (Bucharest) 70: 2281-2285.
  • Montiel-Sánchez M, García-Cayuela T, Gómez-Maqueo A, García HS, Cano MP (2021) In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chemistry 342: 128087.
  • Ochmian I, Oszmiański J, Lachowicz S, Krupa-Małkiewicz M (2019) Rootstock effect on physico-chemical properties and content of bioactive compounds of four cultivars Cornelian cherry fruits. Scientia Horticulturae 256: 108588.
  • Odabaş-Serin Z, Bakır O (2019) Some chemical, nutritional and mineral properties of dried juniper (Juniperus drupacea L.) berries growing in Turkey. Applied Ecology and Environmental Research 17: 8171-8178.
  • Olędzka A, Cichocka K, Woliński K, Melzig MF, Czerwińska ME (2022) Potentially Bio-Accessible Metabolites from an Extract of Cornus mas Fruit after Gastrointestinal Digestion In Vitro and Gut Microbiota Ex Vivo Treatment. Nutrients 14(11): 2287.
  • Promchan J, Shiowatana JA (2005) Dynamic continuous-flow dialysis system with on-line electrothermal atomic-absorption spectrometric and pH measurements for in-vitro determination of iron bioavailability by simulated gastrointestinal digestion. Analytical and Bioanalytical Chemistry 382: 360-1367.
  • Rousseau S, Kyomugasho C, Celus M, Hendrickx MEG, Grauwet T (2020) Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Critical Reviews in Food Science and Nutrition 60: 826-843.
  • Savaş E, Tavşanlı H, Çatalkaya G, Çapanoğlu E, Tamer CE (2020) The antimicrobial and antioxidant properties of garagurt: Traditional Cornelian cherry (Cornus mas) marmalade. Quality Assurance and Safety of Crops and Foods 12: 12-23.
  • Sozański T, Kucharska A, Szumny A, Magdalan J, Bielska K, Merwid Ląd A (2014) The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARα activation in hypercholesterolemic rabbits. Phytomedicine 21: 1774-1784.
  • Stanković MS, Topuzović MD (2012) In vitro antioxidant activity of extracts from leaves and fruits of common dogwood (Cornus sanguinea L.). Acta Botanica Gallica: Botany Letters 159: 79-83.
  • Tenuta MC, Deguin B, Loizzo MR, Cuyamendous C, Bonesi M, Sicari V, Trabalzini, Mitaine-Offer A-C, Xiao J, Tundis R (2022) An Overview of Traditional Uses, Phytochemical Compositions and Biological Activities of Edible Fruits of European and Asian Cornus Species. Foods 11: 1240.
  • Truba J, Stanisławska I, Walasek M, Wieczorkowska W, Woliński K, Buchholz T, Melzig MF, Czerwińska ME (2020) Inhibition of digestive enzymes and antioxidant activity of extracts from fruits of Cornus alba, Cornus sanguinea subsp. hungarica and Cornus florida -A comparative study. Plants 9: 122.
  • TUIK Turkish Statistical Institute (TURKSTAT) (2022) Crop production statistics. http://tuik.gov.tr. Accessed 27 April, 2022.
  • Xiang QY, Thomas DT, Zhang W, Manchester SR, Murrell Z (2006) Species level phylogeny of the genus Cornus (Cornaceae) based on molecular and morphological evidence—implications for taxonomy and Tertiary intercontinental migration. Taxon 55: 9-30.
  • Vitali D, Vedrina Dragojevic I, Šebecic B (2009) Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chemistry 114: 1462-1469.
  • Yilmaz KU, Ercisli S, Zengin Y, Sengul M, Kafkas EY (2009) Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry 114: 408-412.
There are 33 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Asuman Cansev 0000-0002-3353-846X

Meryem İpek 0000-0002-0609-3442

Güler Çelik 0000-0001-8112-4096

Sibel Taşkesen 0000-0002-5634-8191

Yasemin Şahan 0000-0003-3457-251X

Ahmet İpek 0000-0001-5821-2426

Ayşegül Akpınar 0000-0002-4606-0645

Publication Date December 2, 2022
Submission Date May 9, 2022
Published in Issue Year 2022 Volume: 35 Issue: 3

Cite

APA Cansev, A., İpek, M., Çelik, G., Taşkesen, S., et al. (2022). Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species. Mediterranean Agricultural Sciences, 35(3), 115-120. https://doi.org/10.29136/mediterranean.1114313
AMA Cansev A, İpek M, Çelik G, Taşkesen S, Şahan Y, İpek A, Akpınar A. Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species. Mediterranean Agricultural Sciences. December 2022;35(3):115-120. doi:10.29136/mediterranean.1114313
Chicago Cansev, Asuman, Meryem İpek, Güler Çelik, Sibel Taşkesen, Yasemin Şahan, Ahmet İpek, and Ayşegül Akpınar. “Comparative Characterization of the Content and in Vitro Bioaccessibility of Minerals in Two Cornus Species”. Mediterranean Agricultural Sciences 35, no. 3 (December 2022): 115-20. https://doi.org/10.29136/mediterranean.1114313.
EndNote Cansev A, İpek M, Çelik G, Taşkesen S, Şahan Y, İpek A, Akpınar A (December 1, 2022) Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species. Mediterranean Agricultural Sciences 35 3 115–120.
IEEE A. Cansev, M. İpek, G. Çelik, S. Taşkesen, Y. Şahan, A. İpek, and A. Akpınar, “Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species”, Mediterranean Agricultural Sciences, vol. 35, no. 3, pp. 115–120, 2022, doi: 10.29136/mediterranean.1114313.
ISNAD Cansev, Asuman et al. “Comparative Characterization of the Content and in Vitro Bioaccessibility of Minerals in Two Cornus Species”. Mediterranean Agricultural Sciences 35/3 (December 2022), 115-120. https://doi.org/10.29136/mediterranean.1114313.
JAMA Cansev A, İpek M, Çelik G, Taşkesen S, Şahan Y, İpek A, Akpınar A. Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species. Mediterranean Agricultural Sciences. 2022;35:115–120.
MLA Cansev, Asuman et al. “Comparative Characterization of the Content and in Vitro Bioaccessibility of Minerals in Two Cornus Species”. Mediterranean Agricultural Sciences, vol. 35, no. 3, 2022, pp. 115-20, doi:10.29136/mediterranean.1114313.
Vancouver Cansev A, İpek M, Çelik G, Taşkesen S, Şahan Y, İpek A, Akpınar A. Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species. Mediterranean Agricultural Sciences. 2022;35(3):115-20.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.