Research Article
BibTex RIS Cite

RELAXING MULTICURVES ON THE TWICE PUNCTURED MÖBIUS BAND

Year 2023, Volume: 9 Issue: 1, 16 - 22, 26.06.2023
https://doi.org/10.51477/mejs.1286503

Abstract

Let N1,n (n ≥ 1) be a non-orientable surface of genus 1 with n punctures and one boundary component. Generalized Dynnikov coordinates provide a bijection between the set of multicurves in N1,n and Z2n−1 \ {0}. In this paper we restrict to the case where n = 2 and describe an algorithm to relax a multicurve in N1,2 making use of its generalized Dynnikov coordinates

References

  • Artin, E., “Theorie der Zöpfe”, Abh. Math. Sem., Univ. Hamburg, 4, 47–72, 1925.
  • Artin, E., “Theory of braids”, Ann. of Math., 48(2), 101–126, 1947.
  • Dynnikov, I., “On a Yang-Baxter mapping and the Dehornoy ordering”, Uspekhi Mat. Nauk, 57(3(345)), 151–152, 2002.
  • Dehornoy, P., Dynnikov, I., Rolfsen, D., and Wiest, B., Ordering braids, Mathematical Surveys and Monographs, vol. 148, American Mathematical Society, Providence, RI, 2008.
  • Hall, T., Yurttaş, S. Ö., “On the topological entropy of families of braids”, Topology Appl., 156(8), 1554–1564, 2009.
  • Hall, T., Yurttaş, S. Ö., “Intersections of multicurves from Dynnikov coordinates”, Bulletin of the Australian Mathematical Society, 98(1), 149–158, 2018.
  • Korkmaz, M., “Mapping class groups of nonorientable surfaces”, Geom. Dedicata 89, 109-133, 2002.
  • Moussafir, J.O., “On computing the entropy of braids”, Funct. Anal. Other Math., 1(1), 37-46, 2006.
  • Yurttaş, S. Ö., Pamuk, M., “Integral laminations on non-orientable surfaces”, Turkish Journal of Mathematics, 42, 69-82, 2018.
  • Yurttaş, S. Ö., “Curves on non-orientable surfaces and crosscap transpositions”, Mathematics, 10(9), 1–33, 2022.
Year 2023, Volume: 9 Issue: 1, 16 - 22, 26.06.2023
https://doi.org/10.51477/mejs.1286503

Abstract

References

  • Artin, E., “Theorie der Zöpfe”, Abh. Math. Sem., Univ. Hamburg, 4, 47–72, 1925.
  • Artin, E., “Theory of braids”, Ann. of Math., 48(2), 101–126, 1947.
  • Dynnikov, I., “On a Yang-Baxter mapping and the Dehornoy ordering”, Uspekhi Mat. Nauk, 57(3(345)), 151–152, 2002.
  • Dehornoy, P., Dynnikov, I., Rolfsen, D., and Wiest, B., Ordering braids, Mathematical Surveys and Monographs, vol. 148, American Mathematical Society, Providence, RI, 2008.
  • Hall, T., Yurttaş, S. Ö., “On the topological entropy of families of braids”, Topology Appl., 156(8), 1554–1564, 2009.
  • Hall, T., Yurttaş, S. Ö., “Intersections of multicurves from Dynnikov coordinates”, Bulletin of the Australian Mathematical Society, 98(1), 149–158, 2018.
  • Korkmaz, M., “Mapping class groups of nonorientable surfaces”, Geom. Dedicata 89, 109-133, 2002.
  • Moussafir, J.O., “On computing the entropy of braids”, Funct. Anal. Other Math., 1(1), 37-46, 2006.
  • Yurttaş, S. Ö., Pamuk, M., “Integral laminations on non-orientable surfaces”, Turkish Journal of Mathematics, 42, 69-82, 2018.
  • Yurttaş, S. Ö., “Curves on non-orientable surfaces and crosscap transpositions”, Mathematics, 10(9), 1–33, 2022.
There are 10 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Article
Authors

Abdullah Baykal 0000-0001-8011-024X

Ferihe Atalan This is me 0000-0001-6547-0570

Saadet Öykü Yurttaş This is me 0000-0002-0262-1914

Publication Date June 26, 2023
Submission Date May 1, 2023
Acceptance Date June 19, 2023
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

IEEE A. Baykal, F. Atalan, and S. Ö. Yurttaş, “RELAXING MULTICURVES ON THE TWICE PUNCTURED MÖBIUS BAND”, MEJS, vol. 9, no. 1, pp. 16–22, 2023, doi: 10.51477/mejs.1286503.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png