Conference Paper
BibTex RIS Cite

History and Educational Potential of LEGO Mindstorms NXT

Year 2013, Volume: 9 Issue: 2, 127 - 137, 21.01.2013

Abstract

Educational usage of the robotics has accelerated recently because of educational potential of robotics has been recognized by educators and popularity of international robotics tournaments. Many university and schools prepare technology and robotics related summer schools for children. LEGO Mindstorms NXT is the most popular and commonly used robotics set for educational purposes. These robot sets rooted to Seymour Papert’s LOGO studies which have much influence Instructional Technology in 1960’s. This study aims to present a literature review on educational potential of LEGO Mindstorms NXT robotics sets. Robotics mainly used in education for supporting the STEM (Science, Technology, Engineering and Mathematics) education. Most of the related studies resulted with positive effects of the robotics activities in STEM education. Robotics also used in education to increase some skills of the children such as discovery learning, critical thinking and social skills.

References

  • Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future of learning group publication, 5(3), 438.
  • Barak, M., & Zadok, Y. (2007). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19(3), 289–307. Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of Research on Technology in Education, 39(3), 229. Beer, R. D., Chiel, H. J., & Drushel, R. F. (1999). Using autonomous robotics to teach science and engineering. Communications of the ACM, 42(6), 85–92.
  • Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978–988.
  • Bjoerner, T. (2009, June). If I had a Robot it should do Everything for me: Children’s Attitudes to Robots in Everyday Life. International Journal of Learning, 16(3), 243–254.
  • Burket, S., Small, C., Rossetti, C., Hill, B., & Gattis, C. (2008). A day camp for middle school girls to create a STEM pipeline. Proceedings of the 2008 American Society for Engineering Education Annual Conference & Exposition. Pittsburgh, PA.
  • Cannon, K., LaPoint, M. A., Bird, N., Panciera, K., Veeraraghavan, H., Papanikolopoulos, N., & Gini, M. (2006). No fear: University of Minnesota Robotics Day Camp introduces local youth to hands-on technologies. Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 363–368).
  • Cannon, K. R., Panciera, K. A., & Papanikolopoulos, N. P. (2007). Second annual robotics summer camp for underrepresented students. Proceedings of the 12th annual SIGCSE conference on Innovation and technology in computer science education (pp. 14–18). New York, NY, USA: ACM.
  • Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science. ACM SIGCSE Bulletin (Vol. 35, pp. 307–311). ACM. doi:10.1145/792548.611994
  • Harel, I. (1991). Children designers. Ablex Pub. Corp. (pp. 24–27). New Jersey: Ablex Publishing. Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO Training on Pupils ’ School Performance in Mathematics , Problem Solving Ability and Attitude : Swedish Data. Educational Technology & Society, 9(3), 182 – 194.
  • Iturrizaga, I. M. (n.d.). Study of educational impact of the LEGO Dacta materials-INFOESCUELAMED. Final Report. 2000.
  • Jim, C. K. W. (2010). Teaching with LEGO mindstorms robots: Effects on learning environment and attitudes toward science. ProQuest Dissertations and Theses. The University of Texas at Dallas, United States -- Texas.
  • Johnson, J. (2003). Children, robotics, and education. Artificial Life and Robotics, 7(1), 16–21. doi:1007/s10015-003-0265-5
  • Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a digital world. New Jersey: Lawrence Erlbaum.
  • Keathly, D., & Akl, R. (2007). Attracting and Retaining Women in Computer Science and Engineering: Evaluating the Results. 2007 ASEE Annual Conference.
  • Lego Mindstorms NXT Hardware Developer Kit. (n.d.). Retrieved August 18, 2011, from http://mindstorms.lego.com/en-us/support/files/default.aspx
  • Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils’ ability to solve logical problems? Computers & Education, 49(4), 1097–1111.
  • Martin, F. (1988). Children, cybernetics, and programmable turtles. Unpublished Masters Thesis, Massachusetts Institute of Technology Media Laboratory.
  • Martin, F., Mikhak, B., Resnick, M., Silverman, B., & Berg, R. (2000). To mindstorms and beyond: Evolution of a construction kit for magical machines. Robots for kids: Exploring new technologies for learning (pp. 9–33). San Francisco: Morgan Kaufmann.
  • Mataric, M. J., Koenig, N., & Feil-Seifer, D. (2007). Materials for enabling hands-on robotics and STEM education. AAAI spring symposium on robots and robot venues: Resources for AI education.
  • Mauch, E. (2001). Using Technological Innovation To Improve the Problem-Solving Skills of Middle School Students: Educators’ Experiences with the LEGO Mindstorms Robotic Invention System. Clearing House, 74(4), 211–214.
  • Maxwell, J. W. (2006). Re-situating Constructionism. The International Handbook of Virtual Learning Environments, 279–298.
  • McNally, M., Goldweber, M., Fagin, B., & Klassner, F. (2006). Do lego mindstorms robots have a future in CS education? Proceedings of the 37th SIGCSE technical symposium on Computer science education - SIGCSE ’06, 61. doi:10.1145/1121341.1121362
  • McNerney, T. (2004). From turtles to Tangible Programming Bricks: explorations in physical language design. Personal and Ubiquitous Computing, 8(5), 326–337. doi:10.1007/s00779004-0295-6
  • McWhorter, W. (2005). Turtles and beyond: A history of programmable robots. Unpublished manuscript.
  • Mindell, D., Beland, C., Wesley, C., Clarke, D., Park, R., & Trupiano, M. (n.d.). LEGO mindstorms, the structure of an engineering (r)evolution. Retrieved July 15, 2011, from web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
  • Mosley, P., & Kline, R. (2006). Engaging Students: A Framework Using LEGO® Robotics to Teach Problem Solving. Information Technology, Learning, and Performance Journal, 24(1).
  • Nordstrom, G., Reasonover, G., & Hutchinson, B. (2009). Attracting Students to Engineering Through Robotics Camp. ASEE Southeast Section Conference.
  • Nourbakhsh, I. R., Hamner, E., Crowley, K., & Wilkinson, K. (2004). Formal measures of learning in a secondary school mobile robotics course. Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on (Vol. 2, pp. 1831–1836 Vol.2).
  • Nugent, G., Barker, B., & Grandgenett, N. (2010). Impact of Robotics and Geospatial Technology Interventions on Youth STEM Learning and Attitudes. Journal of Research on Technology in Education, 42(4), 391–408.
  • Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas. New York. New York: Basic Books.
  • Papert, S. (1999). What is Logo? Who needs it. Logo Philosophy and Implementation (pp. iv–xvi). Logo Computer Systems Inc.
  • Papert, S., & Harel, I. (n.d.). Situating constructionism. Retrieved July 15, 2011, from http://www.papert.org/articles/SituatingConstructionism.html
  • Papert, S., & Solomon, C. (1971). Twenty things to do with a computer. Retrieved July 15, 2011, from http://dspace.mit.edu/handle/1721.1/5836
  • Petre, M., & Price, B. (2004). Using Robotics to Motivate “Back Door” Learning. Education and Information Technologies, 9(2), 147–158. doi:10.1023/B:EAIT.0000027927.78380.60
  • Robinson, M. (2005). Robotics-Driven Activities: Can They Improve Middle School Science Learning? Bulletin of Science, Technology & Society, 25(1), 73– doi:1177/0270467604271244
  • Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education, 5(3-4), 17–28.
  • Ruiz-del-Solar, J., & Aviles, R. (2004). Robotics Courses for Children as a Motivation Tool: The Chilean Experience. IEEE Transactions on Education, 47(4), 474–480. doi:1109/TE.2004.825063
  • Sargent, R., Resnick, M., Martin, F., & Silverman, B. (1996). Building and learning with programmable bricks. Constructionism in practice: Designing, thinking and learning in a digital world, 161–174.
  • Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 45(3), 373–394. doi:1002/tea
  • Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2006a). İlköğretim Fen ve Teknoloji Dersi (6,7 ve 8. Sınıflar) Öğretim Programı.
  • Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2006b). İlköğretim Teknoloji ve Tasarım Dersi Öğretim Programı ve Klavuzu (6, 7 ve 8. Sınıflar ).
  • Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2009). İlköğretim Matematik Dersi 1-5. Sınıflar Öğretim Programı.
  • Watt, M. (1982). What is Logo? Creative Computing, 8(10), 112–29.
  • Williams, D., Ma, Y., Prejean, L., & Ford, M. (2008). Acquisition of Physics Content Knowledge and Scientific Inquiry Skills in a Robotics Summer Camp. Journal of Research on Technology in Education, 40(2), 201–216.
  • Wyeth, P., Venz, M., & Wyeth, G. (2004). Scaffolding children’s robot building and programming activities. RoboCup 2003: Robot Soccer World Cup VII, 308–319.

History and Educational Potential of LEGO Mindstorms NXT

Year 2013, Volume: 9 Issue: 2, 127 - 137, 21.01.2013

Abstract

LEGO Mindstorms NXT’lerin Tarihi ve Eğitsel Potansiyeli: Robotların eğitsel amaçlarla kullanımı giderek artmaktadır. Eğitimcilerin robotların eğitsel potansiyelinin farkına varmaları ve uluslararası robot turnuvalarının popülerlik kazanmasının robotların eğitsel kullanımına katkısı büyüktür. Birçok üniversite ve okul, teknoloji ve robotlar konulu yaz kampları düzenlemektedirler. LEGO Mindstorms NXT en popüler ve en çok kullanılan eğitsel robot setleridir. Bu robot setlerinin geçmişi, Seymour Papert’in LOGO çalışmalarına dayanmaktadır. Bu çalışmaların 1960’larda eğitim teknolojisine büyük etkileri olmuştur. Bu tarama çalışmasının amacı son zamanlarda eğitimcilerin ilgisini çeken, robotların eğitsel amaçlarla kullanımına yönelik çalışmaları inceleyerek, LEGO Mindstorms NXT robot setlerinin eğitim amaçlı kullanım potansiyellerinin belirlenmesidir. Robotlar eğitimde en çok FTMM (Fen, Teknoloji, Mühendislik ve Matematik) eğitimini desteklemek amaçlı kullanılmışlardır. Bu konuda yapılan çalışmaların büyük bir bölümü robotların FTMM eğitimine pozitif etkisiyle sonuçlanmıştır. Robotların eğitimde bir diğer kullanım alanı ise çocukların keşfetme, eleştirel düşünebilme ve sosyal becerilerini geliştirme amaçlıdır.

References

  • Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future of learning group publication, 5(3), 438.
  • Barak, M., & Zadok, Y. (2007). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19(3), 289–307. Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of Research on Technology in Education, 39(3), 229. Beer, R. D., Chiel, H. J., & Drushel, R. F. (1999). Using autonomous robotics to teach science and engineering. Communications of the ACM, 42(6), 85–92.
  • Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978–988.
  • Bjoerner, T. (2009, June). If I had a Robot it should do Everything for me: Children’s Attitudes to Robots in Everyday Life. International Journal of Learning, 16(3), 243–254.
  • Burket, S., Small, C., Rossetti, C., Hill, B., & Gattis, C. (2008). A day camp for middle school girls to create a STEM pipeline. Proceedings of the 2008 American Society for Engineering Education Annual Conference & Exposition. Pittsburgh, PA.
  • Cannon, K., LaPoint, M. A., Bird, N., Panciera, K., Veeraraghavan, H., Papanikolopoulos, N., & Gini, M. (2006). No fear: University of Minnesota Robotics Day Camp introduces local youth to hands-on technologies. Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 363–368).
  • Cannon, K. R., Panciera, K. A., & Papanikolopoulos, N. P. (2007). Second annual robotics summer camp for underrepresented students. Proceedings of the 12th annual SIGCSE conference on Innovation and technology in computer science education (pp. 14–18). New York, NY, USA: ACM.
  • Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science. ACM SIGCSE Bulletin (Vol. 35, pp. 307–311). ACM. doi:10.1145/792548.611994
  • Harel, I. (1991). Children designers. Ablex Pub. Corp. (pp. 24–27). New Jersey: Ablex Publishing. Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO Training on Pupils ’ School Performance in Mathematics , Problem Solving Ability and Attitude : Swedish Data. Educational Technology & Society, 9(3), 182 – 194.
  • Iturrizaga, I. M. (n.d.). Study of educational impact of the LEGO Dacta materials-INFOESCUELAMED. Final Report. 2000.
  • Jim, C. K. W. (2010). Teaching with LEGO mindstorms robots: Effects on learning environment and attitudes toward science. ProQuest Dissertations and Theses. The University of Texas at Dallas, United States -- Texas.
  • Johnson, J. (2003). Children, robotics, and education. Artificial Life and Robotics, 7(1), 16–21. doi:1007/s10015-003-0265-5
  • Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a digital world. New Jersey: Lawrence Erlbaum.
  • Keathly, D., & Akl, R. (2007). Attracting and Retaining Women in Computer Science and Engineering: Evaluating the Results. 2007 ASEE Annual Conference.
  • Lego Mindstorms NXT Hardware Developer Kit. (n.d.). Retrieved August 18, 2011, from http://mindstorms.lego.com/en-us/support/files/default.aspx
  • Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils’ ability to solve logical problems? Computers & Education, 49(4), 1097–1111.
  • Martin, F. (1988). Children, cybernetics, and programmable turtles. Unpublished Masters Thesis, Massachusetts Institute of Technology Media Laboratory.
  • Martin, F., Mikhak, B., Resnick, M., Silverman, B., & Berg, R. (2000). To mindstorms and beyond: Evolution of a construction kit for magical machines. Robots for kids: Exploring new technologies for learning (pp. 9–33). San Francisco: Morgan Kaufmann.
  • Mataric, M. J., Koenig, N., & Feil-Seifer, D. (2007). Materials for enabling hands-on robotics and STEM education. AAAI spring symposium on robots and robot venues: Resources for AI education.
  • Mauch, E. (2001). Using Technological Innovation To Improve the Problem-Solving Skills of Middle School Students: Educators’ Experiences with the LEGO Mindstorms Robotic Invention System. Clearing House, 74(4), 211–214.
  • Maxwell, J. W. (2006). Re-situating Constructionism. The International Handbook of Virtual Learning Environments, 279–298.
  • McNally, M., Goldweber, M., Fagin, B., & Klassner, F. (2006). Do lego mindstorms robots have a future in CS education? Proceedings of the 37th SIGCSE technical symposium on Computer science education - SIGCSE ’06, 61. doi:10.1145/1121341.1121362
  • McNerney, T. (2004). From turtles to Tangible Programming Bricks: explorations in physical language design. Personal and Ubiquitous Computing, 8(5), 326–337. doi:10.1007/s00779004-0295-6
  • McWhorter, W. (2005). Turtles and beyond: A history of programmable robots. Unpublished manuscript.
  • Mindell, D., Beland, C., Wesley, C., Clarke, D., Park, R., & Trupiano, M. (n.d.). LEGO mindstorms, the structure of an engineering (r)evolution. Retrieved July 15, 2011, from web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
  • Mosley, P., & Kline, R. (2006). Engaging Students: A Framework Using LEGO® Robotics to Teach Problem Solving. Information Technology, Learning, and Performance Journal, 24(1).
  • Nordstrom, G., Reasonover, G., & Hutchinson, B. (2009). Attracting Students to Engineering Through Robotics Camp. ASEE Southeast Section Conference.
  • Nourbakhsh, I. R., Hamner, E., Crowley, K., & Wilkinson, K. (2004). Formal measures of learning in a secondary school mobile robotics course. Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on (Vol. 2, pp. 1831–1836 Vol.2).
  • Nugent, G., Barker, B., & Grandgenett, N. (2010). Impact of Robotics and Geospatial Technology Interventions on Youth STEM Learning and Attitudes. Journal of Research on Technology in Education, 42(4), 391–408.
  • Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas. New York. New York: Basic Books.
  • Papert, S. (1999). What is Logo? Who needs it. Logo Philosophy and Implementation (pp. iv–xvi). Logo Computer Systems Inc.
  • Papert, S., & Harel, I. (n.d.). Situating constructionism. Retrieved July 15, 2011, from http://www.papert.org/articles/SituatingConstructionism.html
  • Papert, S., & Solomon, C. (1971). Twenty things to do with a computer. Retrieved July 15, 2011, from http://dspace.mit.edu/handle/1721.1/5836
  • Petre, M., & Price, B. (2004). Using Robotics to Motivate “Back Door” Learning. Education and Information Technologies, 9(2), 147–158. doi:10.1023/B:EAIT.0000027927.78380.60
  • Robinson, M. (2005). Robotics-Driven Activities: Can They Improve Middle School Science Learning? Bulletin of Science, Technology & Society, 25(1), 73– doi:1177/0270467604271244
  • Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education, 5(3-4), 17–28.
  • Ruiz-del-Solar, J., & Aviles, R. (2004). Robotics Courses for Children as a Motivation Tool: The Chilean Experience. IEEE Transactions on Education, 47(4), 474–480. doi:1109/TE.2004.825063
  • Sargent, R., Resnick, M., Martin, F., & Silverman, B. (1996). Building and learning with programmable bricks. Constructionism in practice: Designing, thinking and learning in a digital world, 161–174.
  • Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 45(3), 373–394. doi:1002/tea
  • Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2006a). İlköğretim Fen ve Teknoloji Dersi (6,7 ve 8. Sınıflar) Öğretim Programı.
  • Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2006b). İlköğretim Teknoloji ve Tasarım Dersi Öğretim Programı ve Klavuzu (6, 7 ve 8. Sınıflar ).
  • Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2009). İlköğretim Matematik Dersi 1-5. Sınıflar Öğretim Programı.
  • Watt, M. (1982). What is Logo? Creative Computing, 8(10), 112–29.
  • Williams, D., Ma, Y., Prejean, L., & Ford, M. (2008). Acquisition of Physics Content Knowledge and Scientific Inquiry Skills in a Robotics Summer Camp. Journal of Research on Technology in Education, 40(2), 201–216.
  • Wyeth, P., Venz, M., & Wyeth, G. (2004). Scaffolding children’s robot building and programming activities. RoboCup 2003: Robot Soccer World Cup VII, 308–319.
There are 45 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Memet Üçgül

Publication Date January 21, 2013
Published in Issue Year 2013 Volume: 9 Issue: 2

Cite

APA Üçgül, M. (2013). History and Educational Potential of LEGO Mindstorms NXT. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 9(2), 127-137.

The content of the Mersin University Journal of the Faculty of Education is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.