Research Article
BibTex RIS Cite

Matematik Öğretmeni Adaylarının Oluşturduğu GeoGebra Etkinliklerinin Matematiksel Derinlik Seviyeleri ve Teknolojik Eylemler Bakımından İncelenmesi

Year 2024, Volume: 53 Issue: 243, 1329 - 1356, 01.08.2024
https://doi.org/10.37669/milliegitim.1250883

Abstract

Bu çalışma, ilköğretim matematik öğretmeni adaylarının açılar ile ilgili geliştirdikleri GeoGebra etkinliklerinin matematiksel ve teknolojik özelliklerini ve bu özellikleri arasındaki ilişkileri incelemeyi amaçlamıştır. Karma desene sahip olan bu çalışmaya 50 ilköğretim matematik öğretmeni adayı katılmıştır. Çalışmada öğretmen adaylarının ürettikleri GeoGebra etkinlikleri Trocki ve Hollebrands’ın (2018) dinamik geometri etkinliklerinin kalitesini belirlemek üzere geliştirdikleri teorik çerçeveye göre matematiksel derinlik seviyeleri ve teknolojik eylemler bakımından incelenmiştir. Verilerin analizinde hem tanılayıcı hem de çıkarımsal istatistiki yöntemler kullanılmıştır. Elde edilen sonuçlar, öğretmen adaylarının açılar konusuyla ilgili toplam 85 GeoGebra içerikli etkinlik hazırladığını göstermiştir. Bu etkinliklerin çok büyük bir kısmı içeriğindeki yönergelerin öğrencilerden düşük bilişsel çaba sergilemeyi talep etmesi nedeniyle matematiksel derinlik olarak düşük seviyelerde bulunmuştur. Ayrıca öğretmen adaylarının etkinliklerindeki teknolojik eylemler incelendiğinde, sıklıkla yazılımın sürükleme, ölçme ve çizim eylemlerine yer verdikleri görülmüştür. Geliştirilen etkinliklerinin matematiksel derinlik ve teknolojik eylem türleri arasındaki ilişkiler ile ilgili çıkarımsal istatistiki sonuçlar, yüksek matematiksel derinlik seviyesindeki etkinliklerindeki teknolojik eylem sayısının düşük matematiksel derinlik seviyesindeki etkinliklerindeki teknolojik eylem sayısından fazla olduğunu ortaya çıkarmıştır. Tanısal istatistik sonuçları ise matematiksel derinlik seviyesi yüksek olan etkinliklerde teknolojik eylem sayısının fazla olmasının sık bir durum olduğunu fakat bir gereklilik arz etmediğini gösteren kanıtlar sunmuştur.

References

  • Ayyıldız, H., Salihoğlu, S., ve Güven, B. (2019). Ortaokul ve lise matematik ders kitaplarında bulunan dinamik matematik yazılımı destekli etkinliklerin incelenmesi. 4th International Symposium of Turkish Computer and Mathematics Education, 26-28 September 2019, İzmir.
  • Arzarello, F., Olivero, F., Paola, D., ve Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34, 66–72.
  • Baccaglini-Frank, A., ve Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15, 225-253.
  • Bozkurt, A., ve Cilavdaroğlu, A. K. (2011). Matematik ve sınıf öğretmenlerinin teknolojiyi kullanma ve derslerine teknolojiyi entegre etme algıları, Kastamonu Eğitim Dergisi, 19(3), 859–870.
  • Bozkurt, A., & Koç, Y., ve Cilavdaroğlu, A. K. (2019). Ortaokul matematik öğretmen adaylarının açı kavramına dair bilgilerinin incelenmesi. Kastamonu Eğitim Dergisi, 27(3), 949–958.
  • Bozkurt, G., ve Koyunkaya, M. Y. (2020). From micro-teaching to classroom teaching: An examination of prospective mathematics teachers’ technology-based tasks. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 668–705.
  • Bozkurt, G., ve Koyunkaya, M. Y. (2022). Supporting prospective mathematics teachers’ planning and teaching technology-based tasks in the context of a practicum course. Teaching and Teacher Education, 119, 103830.
  • Bütüner, S. Ö., ve Filiz, M. (2017). Exploring high-achieving sixth grade students’ erroneous answers and misconceptions on the angle concept. International Journal of Mathematical Education in Science and Technology, 48(4), 533–554.
  • Bütüner, S. Ö., ve Filiz, M. (2018). İlköğretim matematik öğretmenlerinin açılar konusundaki öğrenci kavram yanılgılarının farkındalıklarının belirlenmesi. Sakarya Üniversitesi Eğitim Fakültesi Dergisi, (35), 123–144.
  • Cayton, C. (2012). Examining the cognitive demand of tasks in three technology intensive high school Algebra 1 classrooms. In L. R. Van Zoest, J.-J. Lo, ve J. L. Kratky (Eds.), Proceedings of the thirtyfourth annual meeting of the north american chapter of the ınternational group for the psychology of mathematics education (pp. 865–868), Western Michigan University.
  • Christou, C., Mousoulides, N., Pittalis, M., ve Pitta-Pantazi, D. (2004). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2(3), 339–352
  • Clark-Wilson, A., Robutti, O., ve Sinclair, N. (2014). The mathematics teacher in the digital era. Springer.
  • Connor, J., Moss, L., ve Grover, B. (2007). Student evaluation of mathematical statements using dynamic geometry software. International Journal of Mathematics Education in Science and Technology, 38(1), 55–63.
  • Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches. 2nd ed. Sage.
  • de Villiers, M. (1998). An alternative approach to proof in dynamic geometry. In R. Lehrer ve D. Chazan (Eds.), New directions in teaching and learning geometry (pp. 369–393). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Devichi, C., ve Munier, V. (2013). About the concept of angle in elementary school: Misconceptions and teaching sequences. The Journal of Mathematical Behavior, 32(1), 1–19.
  • Drijvers, P., Tacoma, S., Besamusca, A., Doorman, M., ve Boon, P. (2013). Digital resources inviting changes in mid-adopting teachers’ practices and orchestrations. ZDM Mathematics Education, 45(7), 987–1001.
  • Fahlgren, M., Szabo, A., ve Vinerean, M. (2022). Prospective teachers designing tasks for dynamic geometry environments. In Hodgen, J., Geraniou, E., Bolondi,G.,ve Ferretti, F. (Eds.) Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 2526–2533). Free University of Bozen-Bolzano and ERME.
  • Gulkilik, H. (2023). Analyzing preservice secondary mathematics teachers’ prompts in dynamic geometry environment tasks. Interactive Learning Environments, 31(1), 22–37.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164–192.
  • Hollebrands, K. F., ve Lee, H. S. (2016). Characterizing questions and their focus when pre-service teachers implement dynamic geometry tasks. The Journal of Mathematical Behavior, 43, 148–164.
  • Hollebrands, K. F., McCulloch, A. W., ve Lee, H. S. (2016). Prospective teachers’ incorporation of technology in mathematics lesson plans. In M. Niess, S. Driskell, ve K. Hollebrands (Eds.). Handbook of research on transforming mathematics teacher education in the digital age (pp. 272–292). IGI Global . Hollenbeck, R. M., Wray, J. A., ve Fey, J. T. (2010). Technology and the teaching of mathematics. In B. J. Reys, R. E. Reys, ve R. Rubenstein (Eds.), Mathematics curriculum: Issues, trends, and future directions (pp. 265–276). NCTM.
  • Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations: A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.
  • Hoyles, C., ve Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 121–128). Kluwer Academic Publishers.
  • Hur, J. W., Cullen, T., ve Brush, T. (2010). Teaching for application: A model for assisting pre-service teachers with technology integration. Journal of Technology and Teacher Education, 18(1), 161–182.
  • Kağızmanlı, T. B., Tatar, E., ve Zengin, Y. (2013). Öğretmen adaylarının matematik öğretiminde teknoloji kullanımına ilişkin algılarının incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 14(2), 349–370.
  • Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.
  • Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM, 43(3), 325–336. https://doi. org/10.1007/s11858-011-0329-2
  • Mariotti, M. (2012). Proof and proving in the classroom: Dynamic geometry systems as tools of semiotic mediation. Research in Mathematics Education, 14(2), 163–185.
  • McLain, C. J. (2016). Supporting teachers' selection of dynamic mathematics environment tasks. North Carolina State University, PhD thesis.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. Sınıflar) öğretim programı. MEB Yayınları.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Author.
  • Ozgun-Koca, S. A., Meagher, M., ve Edwards, M. T. (2010). Preservice teachers' emerging TPACK in a technology-rich methods class. Mathematics Educator, 19(2), 10–20.
  • Pea, R. D. (1985). Beyond amplification: Using the computer to reorganize mental functioning. Educational Psychologist, 20(4), 167–182.
  • Sherman, M. F., Cayton, C., Walkington, C., ve Funsch, A. (2020). An analysis of secondary mathematics textbooks with regard to technology integration. Journal for Research in Mathematics Education, 51(3), 361–374.
  • Sinclair, M. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317.
  • Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., ve Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM, 48, 691–719.
  • Smith, M. S., ve Stein, M. K. (1998). Reflections on practice: Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344–350.
  • Stylianides, G. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9–16.
  • Tatar, E., Akkaya, A., ve Kağızmanlı, T. (2011). İlköğretim matematik öğretmeni adaylarının Geogebra ile oluşturdukları materyallerin ve dinamik matematik yazılımı hakkındaki görüşlerinin analizi. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2(3), 181–197.
  • Tabachnick, B. G., ve Fidell, L. S. (2013). Using multivariate statistics (Sixth Edition). Pearson Education Limited.
  • Trocki, A., ve Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2), 110–138.
  • Ünal, D. Ö., ve Ürün, Ö. (2021). Sixth grade students’ some difficulties and misconceptions on angle concept. Eğitimde Nitel Araştırmalar Dergisi, 27, 125–154.
  • Ulusoy, F., ve Turuş, İ. B. (2022). The mathematical and technological nature of tasks containing the use of dynamic geometry software in middle and secondary school mathematics textbooks. Education and Information Technologies, 27(8), 11089-11113.
  • Yiğit-Koyunkaya, M., ve Bozkurt, G. (2019). Matematik öğretmen adaylarının tasarladığı geogebra etkinliklerinin matematiksel derinlik ve teknolojik eylem açısından incelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 515–544.
  • Zbiek, R. M., Heid, M. K., Blume, G. W., ve Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169–1207). Information Age.

Investigation of Prospective Mathematics Teachers' GeoGebra Tasks in terms of Mathematical Depth Levels and Technological Actions

Year 2024, Volume: 53 Issue: 243, 1329 - 1356, 01.08.2024
https://doi.org/10.37669/milliegitim.1250883

Abstract

This study aimed to investigate prospective mathematics teachers’ GeoGebra tasks about angles according to mathematical and technological characteristics and the relationship between these characteristics. Fifty prospective middle school mathematics teachers participated in this mixed design study. In the study, the quality of prospective mathematics teachers’ GeoGebra tasks were examined in terms of mathematical depth levels and technological actions according to the theoretical framework developed by Trocki and Hollebrands (2018). Both diagnostic and inferential statistical methods were used in the analysis of the data. The results showed that prospective teachers prepared a total of 85 GeoGebra-related tasks about the concept of angles. The majority of these tasks were found at lower mathematical depth levels because the prompts in these tasks demanded low cognitive effort from the students. In addition, the tasks often included the technological actions of dragging, measuring, and drawing. Inferential statistical results regarding the relationships between mathematical depth and the technological actions of the tasks revealed that the number of technological actions in the tasks at the higher mathematical depth levels was higher than the number of technological actions in the tasks at the lower mathematical depth levels. On the other hand, the results of the diagnostic statistics presented evidence that it is a frequent situation, but it is not necessary to have a high number of technological actions in tasks with a higher level of mathematical depth, or vice versa.

References

  • Ayyıldız, H., Salihoğlu, S., ve Güven, B. (2019). Ortaokul ve lise matematik ders kitaplarında bulunan dinamik matematik yazılımı destekli etkinliklerin incelenmesi. 4th International Symposium of Turkish Computer and Mathematics Education, 26-28 September 2019, İzmir.
  • Arzarello, F., Olivero, F., Paola, D., ve Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34, 66–72.
  • Baccaglini-Frank, A., ve Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15, 225-253.
  • Bozkurt, A., ve Cilavdaroğlu, A. K. (2011). Matematik ve sınıf öğretmenlerinin teknolojiyi kullanma ve derslerine teknolojiyi entegre etme algıları, Kastamonu Eğitim Dergisi, 19(3), 859–870.
  • Bozkurt, A., & Koç, Y., ve Cilavdaroğlu, A. K. (2019). Ortaokul matematik öğretmen adaylarının açı kavramına dair bilgilerinin incelenmesi. Kastamonu Eğitim Dergisi, 27(3), 949–958.
  • Bozkurt, G., ve Koyunkaya, M. Y. (2020). From micro-teaching to classroom teaching: An examination of prospective mathematics teachers’ technology-based tasks. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 668–705.
  • Bozkurt, G., ve Koyunkaya, M. Y. (2022). Supporting prospective mathematics teachers’ planning and teaching technology-based tasks in the context of a practicum course. Teaching and Teacher Education, 119, 103830.
  • Bütüner, S. Ö., ve Filiz, M. (2017). Exploring high-achieving sixth grade students’ erroneous answers and misconceptions on the angle concept. International Journal of Mathematical Education in Science and Technology, 48(4), 533–554.
  • Bütüner, S. Ö., ve Filiz, M. (2018). İlköğretim matematik öğretmenlerinin açılar konusundaki öğrenci kavram yanılgılarının farkındalıklarının belirlenmesi. Sakarya Üniversitesi Eğitim Fakültesi Dergisi, (35), 123–144.
  • Cayton, C. (2012). Examining the cognitive demand of tasks in three technology intensive high school Algebra 1 classrooms. In L. R. Van Zoest, J.-J. Lo, ve J. L. Kratky (Eds.), Proceedings of the thirtyfourth annual meeting of the north american chapter of the ınternational group for the psychology of mathematics education (pp. 865–868), Western Michigan University.
  • Christou, C., Mousoulides, N., Pittalis, M., ve Pitta-Pantazi, D. (2004). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2(3), 339–352
  • Clark-Wilson, A., Robutti, O., ve Sinclair, N. (2014). The mathematics teacher in the digital era. Springer.
  • Connor, J., Moss, L., ve Grover, B. (2007). Student evaluation of mathematical statements using dynamic geometry software. International Journal of Mathematics Education in Science and Technology, 38(1), 55–63.
  • Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches. 2nd ed. Sage.
  • de Villiers, M. (1998). An alternative approach to proof in dynamic geometry. In R. Lehrer ve D. Chazan (Eds.), New directions in teaching and learning geometry (pp. 369–393). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Devichi, C., ve Munier, V. (2013). About the concept of angle in elementary school: Misconceptions and teaching sequences. The Journal of Mathematical Behavior, 32(1), 1–19.
  • Drijvers, P., Tacoma, S., Besamusca, A., Doorman, M., ve Boon, P. (2013). Digital resources inviting changes in mid-adopting teachers’ practices and orchestrations. ZDM Mathematics Education, 45(7), 987–1001.
  • Fahlgren, M., Szabo, A., ve Vinerean, M. (2022). Prospective teachers designing tasks for dynamic geometry environments. In Hodgen, J., Geraniou, E., Bolondi,G.,ve Ferretti, F. (Eds.) Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 2526–2533). Free University of Bozen-Bolzano and ERME.
  • Gulkilik, H. (2023). Analyzing preservice secondary mathematics teachers’ prompts in dynamic geometry environment tasks. Interactive Learning Environments, 31(1), 22–37.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164–192.
  • Hollebrands, K. F., ve Lee, H. S. (2016). Characterizing questions and their focus when pre-service teachers implement dynamic geometry tasks. The Journal of Mathematical Behavior, 43, 148–164.
  • Hollebrands, K. F., McCulloch, A. W., ve Lee, H. S. (2016). Prospective teachers’ incorporation of technology in mathematics lesson plans. In M. Niess, S. Driskell, ve K. Hollebrands (Eds.). Handbook of research on transforming mathematics teacher education in the digital age (pp. 272–292). IGI Global . Hollenbeck, R. M., Wray, J. A., ve Fey, J. T. (2010). Technology and the teaching of mathematics. In B. J. Reys, R. E. Reys, ve R. Rubenstein (Eds.), Mathematics curriculum: Issues, trends, and future directions (pp. 265–276). NCTM.
  • Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations: A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.
  • Hoyles, C., ve Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 121–128). Kluwer Academic Publishers.
  • Hur, J. W., Cullen, T., ve Brush, T. (2010). Teaching for application: A model for assisting pre-service teachers with technology integration. Journal of Technology and Teacher Education, 18(1), 161–182.
  • Kağızmanlı, T. B., Tatar, E., ve Zengin, Y. (2013). Öğretmen adaylarının matematik öğretiminde teknoloji kullanımına ilişkin algılarının incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 14(2), 349–370.
  • Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.
  • Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM, 43(3), 325–336. https://doi. org/10.1007/s11858-011-0329-2
  • Mariotti, M. (2012). Proof and proving in the classroom: Dynamic geometry systems as tools of semiotic mediation. Research in Mathematics Education, 14(2), 163–185.
  • McLain, C. J. (2016). Supporting teachers' selection of dynamic mathematics environment tasks. North Carolina State University, PhD thesis.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. Sınıflar) öğretim programı. MEB Yayınları.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Author.
  • Ozgun-Koca, S. A., Meagher, M., ve Edwards, M. T. (2010). Preservice teachers' emerging TPACK in a technology-rich methods class. Mathematics Educator, 19(2), 10–20.
  • Pea, R. D. (1985). Beyond amplification: Using the computer to reorganize mental functioning. Educational Psychologist, 20(4), 167–182.
  • Sherman, M. F., Cayton, C., Walkington, C., ve Funsch, A. (2020). An analysis of secondary mathematics textbooks with regard to technology integration. Journal for Research in Mathematics Education, 51(3), 361–374.
  • Sinclair, M. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317.
  • Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., ve Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM, 48, 691–719.
  • Smith, M. S., ve Stein, M. K. (1998). Reflections on practice: Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344–350.
  • Stylianides, G. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9–16.
  • Tatar, E., Akkaya, A., ve Kağızmanlı, T. (2011). İlköğretim matematik öğretmeni adaylarının Geogebra ile oluşturdukları materyallerin ve dinamik matematik yazılımı hakkındaki görüşlerinin analizi. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2(3), 181–197.
  • Tabachnick, B. G., ve Fidell, L. S. (2013). Using multivariate statistics (Sixth Edition). Pearson Education Limited.
  • Trocki, A., ve Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2), 110–138.
  • Ünal, D. Ö., ve Ürün, Ö. (2021). Sixth grade students’ some difficulties and misconceptions on angle concept. Eğitimde Nitel Araştırmalar Dergisi, 27, 125–154.
  • Ulusoy, F., ve Turuş, İ. B. (2022). The mathematical and technological nature of tasks containing the use of dynamic geometry software in middle and secondary school mathematics textbooks. Education and Information Technologies, 27(8), 11089-11113.
  • Yiğit-Koyunkaya, M., ve Bozkurt, G. (2019). Matematik öğretmen adaylarının tasarladığı geogebra etkinliklerinin matematiksel derinlik ve teknolojik eylem açısından incelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 515–544.
  • Zbiek, R. M., Heid, M. K., Blume, G. W., ve Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169–1207). Information Age.
There are 46 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

İsmail Batuhan Turuş 0000-0002-5969-1710

Fadime Ulusoy 0000-0003-3393-8778

Publication Date August 1, 2024
Published in Issue Year 2024 Volume: 53 Issue: 243

Cite

APA Turuş, İ. B., & Ulusoy, F. (2024). Matematik Öğretmeni Adaylarının Oluşturduğu GeoGebra Etkinliklerinin Matematiksel Derinlik Seviyeleri ve Teknolojik Eylemler Bakımından İncelenmesi. Milli Eğitim Dergisi, 53(243), 1329-1356. https://doi.org/10.37669/milliegitim.1250883