Review
BibTex RIS Cite

Voyage of MAPK Modules in Plant Immunity

Year 2021, Volume: 11 Issue: 2, 199 - 207, 23.12.2021
https://doi.org/10.53518/mjavl.959168

Abstract

The evolutionary conserved MAPKs is universal signal transduction pathway of many single and multicellular eukaryotic organisms and any external stimulant by this biochemical pathway is converted into meaningful information. MAPK signal cascades in plants act as control mechanism of diverse biological processes implicated to developmental program from responses to biotic/abiotic stresses. Upon plant sensing of pathogenicity factors, the earliest signal events that is triggered plant defense reactions are the phosphorylation of receptor-like kinases, calcium-dependant kinases and MAP kinases. MAPK cascade functions as a part of signaling system in multiple defense reactions enclosing the biosynthesis of plant stress and/or defense related hormones and signal transmission, production of reactive oxygen species, stomatal closure, activation of multiple defense genes, phytoalexin biosynthesis, gaining strength of cell wall, hypersensitive reaction-related cell death. Messages from elicitors/effectors sensed by cell surface and/or cytoplasmic receptors are conveyed to the downstream substrates multiplying by series of sequential phosphorylation of MAPK cascades. Thus phosphorylated MAPKs is activated. The cell is manipulated altering at gene expression, biochemical and physiological levels by MAPKs-mediated phosphorylation of downstream substrates including various proteins, transcriptomes. Corresponding responses to biotic stresses ultimately begin to emerge. MAPK modules are involved in both PTI/ETI immunity as signaling factors. However after plant-perception (in ETI/PTI immunity) of pathogenicity factors, MAPK activation which plays significant roles in plant defense, has distinguishing features in ETI immunity more vigorous impact, slowly and extended activation period, adaptable to effector modifications in comparison with PTI immunity. Activation of NLR receptor molecules in ETI immunity, lead to activation of MAPK cascades but mechanisms of how happens of MAPKs activation is not clarified yet. Faster activation mechanism of MAPK cascades through PTI immunity by plant membrane surface receptors is studied very well. In this reason, in this review is focused on MAPKs-linkages routes related to PTI immunity.

References

  • Bethke G, Pecher P, EschenLippold L, Tsuda K, Katagiri F, Glazebrook J, Scheel D, Lee J 2012. Activation of the Arabidopsisthaliana mitogen activated protein kinase MPK11 by the flagellinderived elicitor peptide, flg22. Mol Plant Microbe Interact, 25: 471–480.
  • Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke FLH, Chen S, Zhou JM 2018. Receptor-like kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell, 30: 1543-1561.
  • Bigeard J, Hirt H 2018. Nuclear Signaling of Plant MAPKs. Front Plant Sci, 9: 469.
  • Colcombet J. Hirt H 2008. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 413: 217–26.
  • Dangol S, Nguyen NK, Singh R, Chen Y, Wang J, Lee HG, Hwang BK, Jwa NS 2021. Mitogen-Activated Protein Kinase OsMEK2 and OsMPK1 Signaling Is Required for Ferroptotic Cell Death in Rice-Magnaporthe oryzae Interactions. Front Plant Sci, 12: 710794.
  • Doehlemann G, Hemetsberger C 2013. Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol, 198 (4):1001-1016.
  • Duerr B, Gawienowski M, Ropp T, Jacobs T 1993. MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell, 5: 87–96.
  • Frei dit Frey N, Garcia AV, Bigeard J, Zaag R, Bueso E, Garmier M, Pateyron S, de Tauzia-Moreau ML, Brunaud V, Balzergue S, Colcombet J, Aubourg S, Martin-Magniette ML, Hirt H 2014. Functional analysis of Arabidopsisimmune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol, 15 (6): R87.
  • Fuchs S, Grill E, Meskiene I. Schweighofer A 2013. Type 2C protein phosphatases in plants. FEBS J, 280 (2): 681-93.
  • Galletti R, Ferrari S, De Lorenzo G 2011. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytiscinerea. Plant Physiol 157 (2): 804-814.
  • Gao C, Zhuang X, Shen J, Jiang L 2017. Plant ESCRT Complexes: Moving Beyond Endosomal Sorting. Trends Plant Sci, 22 (11): 986–998.
  • Guo Y, Pan W, Liu S, Shen Z, Xu Y, Hu L 2020. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med, 19: 1997-2007.
  • Ha JH, Loh SN 2012. Protein conformational switches: from nature to design. Chemistry, 18: 7984-7999.
  • Hashimoto M, Komatsu K, Maejima K, Okana Y, Shiraishi T, Ishikawa K, Takinami Y, Yamaji Y, Namba S 2012. Identification of three MAPKKKs forming a linear signaling pathway leading to programmed cell death in Nicotiana benthamiana. BMC Plant Biol, 12: 103.
  • Hazra S, Ghosh S, Hazra B 2017. Phytochemicals With Antileishmanial Activity: Prospective Drug Targets. In Studies in Natural Products Chemistry; Elsevier: New York, NY, USA, Volume 52, pp. 303–336.
  • Heinrich M, Baldwin IT, Wu J 2011a. Three MAPK kinases, MEK1, SIPKK, and NPK2, are not involved in activation of SIPK after wounding and herbivore feeding but important for accumulation of trypsin proteinase inhibitors. Plant Mol Biol Rep, 30: 731– 740.
  • Heinrich M, Baldwin IT Wu J 2011b. Two mitogen‐activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta- induced responses in Nicotiana attenuata. J Exp Bot, 62: 4355– 4365.
  • Hoehenwarter W, Thomas M, Nukarinen E, Egelhofer V, Röhrig H, Weckwerth W, Conrath U, Beckers GJ 2013. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Mol Cell Proteom,12: 369–380.
  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, et al. 2002. Mapk G: Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 7: 301– 308.
  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A 2018. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Front Plant Sci, 9: 1387.
  • Jalmi SK, Sinha AK 2016. Functional Involvement of a Mitogen Activated Protein Kinase Module, OsMKK3-OsMPK7-OsWRK30 in Mediating Resistance against Xanthomonas oryzae in Rice. Sci Rep, 6: 37974.
  • Johnson SA, Hunter T 2005. Kinomics: Methods for deciphering the kinome. Nat Methods, 2: 17–25.
  • Kong F, Wang J, Cheng L, Liu S, Wu J, Peng Z, Lu G 2012. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanumlycopersicum. Gene, 499 (1): 108–120.
  • Kong X, Lv W, Zhang D, Jiang S, Zhang S, Li D 2013a. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase. PLoS One, 8 (2): e57714.
  • Kong X, Pan J, Zhang D, Jiang S, Cai G, Wang L, Li D 2013b. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem Biophys Res Commun, 441 (4): 964–969.
  • Kong L, Rodrigues B, Kim JH, He P, Shan L 2021. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. Curr Opin Plant Biol, 63: 102051.
  • Lang J, Colcombet J 2020. Sustained Incompatibility between MAPK Signaling and Pathogen Effectors. Int J Mol Sci, 21 (21): 7954.
  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S 2012. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet, 8 (6): e1002767.
  • Li B, Jiang S, Yu X, Cheng C, Chen S, Cheng Y, Yuan JS, Jiang D, He P, Shan L 2015. Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates
  • Arabidopsis immunity. Plant Cell, 27 (3): 839–856.
  • Liu Y, Zhang D, Wang L, Li D 2013. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep, 31 (6): 1446–60.
  • Liu JZ, Lam HM 2019. Signal Transduction Pathways in Plants for Resistance against Pathogens. Int J Mol Sci, 20(9): 2335.
  • Maldonado-Bonilla LD 2014. Composition and function of P bodies in Arabidopsisthaliana. Front Plant Sci, 5: 201.
  • Maldonado-Bonilla LD, Eschen-Lippold L, Gago-Zachert S, Tabassum N, Bauer N, Scheel D, Lee J 2014. The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen-associated molecular pattern-triggered immune responses. Plant Cell Physiol, 55 (2): 412–425.
  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 23 (4): 1639-53.
  • Melotto M, Underwood W, Koczan J, Nomura K, He SY 2006. Plant stomata function in innate immunity against bacterial invasion. Cell, 126 (5): 969-80.
  • Meng X, Zhang S 2013. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 51: 245–266.
  • Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell, 25 (3): 1126–1142.
  • Mithöfer A, Boland W 2012. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol, 63: 431–450.
  • Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H 2015. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom, 16 (1): 58.
  • Nitta Y, Ding P, Zhang Y 2014. Identification of additional MAP kinases activated upon PAMP treatment. Plant Signal Behav, 9: e976155.
  • Pan J, Zhang M, Kong X, Xing X, Liu Y, Zhou Y, Liu Y, Sun L, Li D 2012. ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta, 235 (4): 661–676.
  • Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A 2016. Plant Defense Signaling and Responses Against Necrotrophic Fungal Pathogens. J Plant Growth Regul, 35: 1159–1174.
  • Peng Y, van Wersch R, Zhang Y 2018. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Mol Plant-Microbe Interact: MPMI, 31 (4): 403- 409.
  • Pitzschke A 2015. Modes of MAPK substrate recognition and control. Trends Plant Sci, 20 (1): 49–55.
  • Raghuram B, Sheikh AH, Rustagi Y, Sinha AK 2015. MicroRNA biogenesis factor DRB1 is a phosphorylation target of mitogen activated protein kinase MPK3 in both rice and Arabidopsis. FEBS J, 282: 521–536.
  • Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK 2010. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res, 17 (3): 139– 53.
  • Ray LB, Sturgill TW 1987. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci USA, 84 (6): 1502–1506.
  • Rodriguez MC, Petersen M, Mundy J 2010. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 61: 621–649.
  • Roux ME, Rasmussen MW, Palma K, Lolle S, Regué ÀM, Bethke G, Glazebrook J, Zhang W, Sieburth L, Larsen MR, Mundy J, Petersen M 2015. The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J, 34 (5): 593–608.
  • Schäfer M, Fischer C, Meldau S, Seebald E, Oelmuller R, Baldwin IT 2011. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol, 156: 1520– 1534.
  • Shin HY, You MK, Jeung JU, Shin JS 2014. OsMPK3 is a TEY-type rice MAPK in Group C and phosphorylates OsbHLH65, a transcription factor binding to the E-box element. Plant Cell Rep, 33: 1343–1353.
  • Sidonskaya E, Schweighofer A, Shubchynskyy V, Kammerhofer N, Hofmann J, Wieczorek K, Meskiene I 2016. Plant resistance against the parasitic nematode Heterodera schachtii is mediated by MPK3 and MPK6 kinases, which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis. J Exp Botany, 67 (1): 107–118.
  • Spallek T, Beck M, Ben Khaled S, Salomon S, Bourdais G, Schellmann S, Robatzek S 2013. ESCRT-I mediates FLS2 endosomal sorting and plant immunity. PLoS Genet, 9 (12): e1004035.
  • Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S 2017. Regulation of stomatal immunity by interdependent functions of a pathogen‐responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell, 29: 526–542.
  • Su J, Yang L, Zhu Q, Wu H, He Y, Liu Y, Xu J, Jiang D, Zhang S 2018. Active photosynthetic inhibition mediated MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol, 16: Article e2004122.
  • Sun T, Nitta Y, Zhang Q, Wu D, Tian H, Lee JS, Zhang Y 2018. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Rep, 19 (7): e45324.
  • Tang D, Wang G, Zhou JM 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell, 29: 618-637.
  • Tena G, Boudsocq M, Sheen J 2011. Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol, 14 (5): 519-29.
  • Wang F, Shang Y, Fan B, Yu JQ, Chen Z 2014. Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive mapk cascade in plant basal defense. PLoS Pathog, 10: e1004243.
  • Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, Zou T, Lu G 2015. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genom, 16 (1): 386.
  • Wang G, Wang T, Jia Z-H, Xuan J-P, Pan D-L, Guo Z-R, Zhang JY 2018. Genome-Wide Bioinformatics Analysis of MAPK Gene Family in Kiwifruit (Actinidia Chinensis). Int J Mol Sci, 19 (9): 2510.
  • Wankhede DP, Misra M, Singh P, Sinha AK 2013. Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches. PLoS One, 8 (5): e65011.
  • Wohlgemuth R, Liese A, Streit W 2017. Biocatalytic Phosphoryltion of Metabolites: Past, Present, and Future. Trends Biotechnol, 35 (5): 452-465.
  • Wu J, Wang J, Pan C, Guan X, Wang Y, Liu S, He Y, Chen J, Chen L, Lu G 2014. Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PloS One, 9 (7): e103032.
  • Xu J, Meng J, Meng X, Zhao Y, Liu J, Sun T, Liu Y, Wang Q, Zhang S 2016. Pathogen-Responsive MPK3 and MPK6 Reprogram the Biosynthesis of Indole Glucosinolates and Their Derivatives in Arabidopsis Immunity. Plant Cell, 28 (5): 1144–1162.
  • Yamada K, Yamaguchi K, Shirakawa T, Nakagami H, Mine A, Ishikawa K, Fujiwara M, Narusaka M, Narusaka Y, Ichimura K, Kobayashi Y, Matsui H, Nomura Y, Nomoto M, Tada Y, Fukao Y, Fukamizo T, Tsuda K, Shirasu K, Shibuya N, Kawasaki T 2016. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J, 35 (22): 2468–2483.
  • Yang X, Zhang L, Yang Y, Schmid M, Wang Y 2021. miRNA Mediated Regulation and Interaction between Plants and Pathogens. Int J Mol Sci, 22 (6): 2913.
  • Yuan M, Ngou B, Ding P, Xin XF 2021. PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol, 62:102030.
  • Zhang Z, Wu Y, Gao M, Zhang J, Kong Q, Liu Y, Ba H, Zhou J, Zhang Y 2012. Disruption of PAMP-inducd MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe, 11: 253–263.
  • Zhang T, Chen S, Harmon AC 2016. Protein-protein interactions in plant mitogen-activated protein kinase cascades. J Exp Bot, 67 (3): 607–618.
  • Zhao ZX, Feng Q, Liu PQ, He XR, Zhao JH, Xu YJ, Zhang LL, Huang YY, Zhao JQ, Fan J, Li Y, Xiao S, Wang WM 2021. RPW8.1 enhances the ethylene-signaling pathway to feedback- attenuate its mediated cell death and disease resistance in Arabidopsis. New Phytol, 229 (1): 516–531.

MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu

Year 2021, Volume: 11 Issue: 2, 199 - 207, 23.12.2021
https://doi.org/10.53518/mjavl.959168

Abstract

Evrimsel olarak korunmuş olan MAPK’ler, tek ve çok hücreli birçok ökaryotik organizmaların evrensel bir sinyal iletim yoludur ve bu biyokimyasal yolla dış çevresel uyarıcı anlamlı bir bilgiye dönüştürülür. Bitkilerde MAPK olaylar dizisi biyotik/abiyotik streslere tepki ve gelişim programıyla ilgili çeşitli olayları kapsayan biyolojik süreçlerin kontrol mekanizması gibi işlev görürler. Patojenisite faktörlerinin bitki tarafından tanınmasından sonra bitki savunma tepkimelerini harekete geçiren ilk sinyalizasyon olayları; reseptör-benzeri kinazların, kalsiyum-bağlı kinazların ve MAP kinazların fosforilasyonudur. MAPK kademeli olayları bitki stres ve/veya savunma hormonlarının biyosentezi ve sinyal bildirimi, reaktif oksijen türlerinin üretimi, stomaların kapanması, savunma genlerinin aktif hale geçmesi, fitoaleksin biyosentezi, hücre duvarının güçlenmesi ve aşırı duyarlılıkla ilgili hücre ölümleri gibi çeşitli savunma tepkimelerinde sinyalizasyon faktörleri olarak görev yaparlar. Hücre-yüzey ve/veya sitoplazmik reseptörlerce algılanan elisitörler/efektörler’in verdiği mesajlar kademeli olarak bir dizi MAPK-fosforilasyon yoluyla çoğaltılarak ilerideki substratlara ulaşır. Fosforile olan MAPK’ler böylece aktiflenmiş olurlar. MAPK dizisinin ileri aşamalarında yer alan substratlar, çeşitli proteinler/transkriptomlar da aktiflenen MAPK’lerle fosforile edilerek gen anlatımı, biyokimyasal ve fizyolojik düzeyde değişimler yaparak hücreyi manipule ederler. Böylece biyotik/abiyotik streslere uygun tepkiler gelişmeye başlar. MAPK modülleri her iki PTI/ETI immünite de sinyal elemanlarıdır. Ancak patojenisite faktörlerinin bitkilerce algılanmasından (ETI/PTI immünitede) sonra bitki savunmasında önemli roller üstlenen MAPK aktiflenmesi ETI immünitede, PTI savunmaya göre daha güçlü, yavaş, uzun süreli ve efektördeki değişimlere karşı daha esnek özelliklere sahiptir. ETI immünitede NLR moleküllerinin aktiflenmesi MAPK’lerin harekete geçmesine yol açar ancak MAPK’lerin nasıl etkinleştiği mekanizması henüz net değildir. Hücre yüzey reseptörleriyle teşvik edilen bitki PTI immünite ile MAPK’nin hızlı etkinleşme mekanizması daha iyi bilinmektedir. Bu nedenle ele alınan derlemede bitki immünitesindeki MAPK’lerin PTI immüniteye dahil olan bağlantı yollarına odaklanılmıştır.

References

  • Bethke G, Pecher P, EschenLippold L, Tsuda K, Katagiri F, Glazebrook J, Scheel D, Lee J 2012. Activation of the Arabidopsisthaliana mitogen activated protein kinase MPK11 by the flagellinderived elicitor peptide, flg22. Mol Plant Microbe Interact, 25: 471–480.
  • Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke FLH, Chen S, Zhou JM 2018. Receptor-like kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell, 30: 1543-1561.
  • Bigeard J, Hirt H 2018. Nuclear Signaling of Plant MAPKs. Front Plant Sci, 9: 469.
  • Colcombet J. Hirt H 2008. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 413: 217–26.
  • Dangol S, Nguyen NK, Singh R, Chen Y, Wang J, Lee HG, Hwang BK, Jwa NS 2021. Mitogen-Activated Protein Kinase OsMEK2 and OsMPK1 Signaling Is Required for Ferroptotic Cell Death in Rice-Magnaporthe oryzae Interactions. Front Plant Sci, 12: 710794.
  • Doehlemann G, Hemetsberger C 2013. Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol, 198 (4):1001-1016.
  • Duerr B, Gawienowski M, Ropp T, Jacobs T 1993. MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell, 5: 87–96.
  • Frei dit Frey N, Garcia AV, Bigeard J, Zaag R, Bueso E, Garmier M, Pateyron S, de Tauzia-Moreau ML, Brunaud V, Balzergue S, Colcombet J, Aubourg S, Martin-Magniette ML, Hirt H 2014. Functional analysis of Arabidopsisimmune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol, 15 (6): R87.
  • Fuchs S, Grill E, Meskiene I. Schweighofer A 2013. Type 2C protein phosphatases in plants. FEBS J, 280 (2): 681-93.
  • Galletti R, Ferrari S, De Lorenzo G 2011. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytiscinerea. Plant Physiol 157 (2): 804-814.
  • Gao C, Zhuang X, Shen J, Jiang L 2017. Plant ESCRT Complexes: Moving Beyond Endosomal Sorting. Trends Plant Sci, 22 (11): 986–998.
  • Guo Y, Pan W, Liu S, Shen Z, Xu Y, Hu L 2020. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med, 19: 1997-2007.
  • Ha JH, Loh SN 2012. Protein conformational switches: from nature to design. Chemistry, 18: 7984-7999.
  • Hashimoto M, Komatsu K, Maejima K, Okana Y, Shiraishi T, Ishikawa K, Takinami Y, Yamaji Y, Namba S 2012. Identification of three MAPKKKs forming a linear signaling pathway leading to programmed cell death in Nicotiana benthamiana. BMC Plant Biol, 12: 103.
  • Hazra S, Ghosh S, Hazra B 2017. Phytochemicals With Antileishmanial Activity: Prospective Drug Targets. In Studies in Natural Products Chemistry; Elsevier: New York, NY, USA, Volume 52, pp. 303–336.
  • Heinrich M, Baldwin IT, Wu J 2011a. Three MAPK kinases, MEK1, SIPKK, and NPK2, are not involved in activation of SIPK after wounding and herbivore feeding but important for accumulation of trypsin proteinase inhibitors. Plant Mol Biol Rep, 30: 731– 740.
  • Heinrich M, Baldwin IT Wu J 2011b. Two mitogen‐activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta- induced responses in Nicotiana attenuata. J Exp Bot, 62: 4355– 4365.
  • Hoehenwarter W, Thomas M, Nukarinen E, Egelhofer V, Röhrig H, Weckwerth W, Conrath U, Beckers GJ 2013. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Mol Cell Proteom,12: 369–380.
  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, et al. 2002. Mapk G: Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 7: 301– 308.
  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A 2018. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Front Plant Sci, 9: 1387.
  • Jalmi SK, Sinha AK 2016. Functional Involvement of a Mitogen Activated Protein Kinase Module, OsMKK3-OsMPK7-OsWRK30 in Mediating Resistance against Xanthomonas oryzae in Rice. Sci Rep, 6: 37974.
  • Johnson SA, Hunter T 2005. Kinomics: Methods for deciphering the kinome. Nat Methods, 2: 17–25.
  • Kong F, Wang J, Cheng L, Liu S, Wu J, Peng Z, Lu G 2012. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanumlycopersicum. Gene, 499 (1): 108–120.
  • Kong X, Lv W, Zhang D, Jiang S, Zhang S, Li D 2013a. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase. PLoS One, 8 (2): e57714.
  • Kong X, Pan J, Zhang D, Jiang S, Cai G, Wang L, Li D 2013b. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem Biophys Res Commun, 441 (4): 964–969.
  • Kong L, Rodrigues B, Kim JH, He P, Shan L 2021. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. Curr Opin Plant Biol, 63: 102051.
  • Lang J, Colcombet J 2020. Sustained Incompatibility between MAPK Signaling and Pathogen Effectors. Int J Mol Sci, 21 (21): 7954.
  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S 2012. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet, 8 (6): e1002767.
  • Li B, Jiang S, Yu X, Cheng C, Chen S, Cheng Y, Yuan JS, Jiang D, He P, Shan L 2015. Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates
  • Arabidopsis immunity. Plant Cell, 27 (3): 839–856.
  • Liu Y, Zhang D, Wang L, Li D 2013. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep, 31 (6): 1446–60.
  • Liu JZ, Lam HM 2019. Signal Transduction Pathways in Plants for Resistance against Pathogens. Int J Mol Sci, 20(9): 2335.
  • Maldonado-Bonilla LD 2014. Composition and function of P bodies in Arabidopsisthaliana. Front Plant Sci, 5: 201.
  • Maldonado-Bonilla LD, Eschen-Lippold L, Gago-Zachert S, Tabassum N, Bauer N, Scheel D, Lee J 2014. The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen-associated molecular pattern-triggered immune responses. Plant Cell Physiol, 55 (2): 412–425.
  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 23 (4): 1639-53.
  • Melotto M, Underwood W, Koczan J, Nomura K, He SY 2006. Plant stomata function in innate immunity against bacterial invasion. Cell, 126 (5): 969-80.
  • Meng X, Zhang S 2013. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 51: 245–266.
  • Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell, 25 (3): 1126–1142.
  • Mithöfer A, Boland W 2012. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol, 63: 431–450.
  • Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H 2015. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom, 16 (1): 58.
  • Nitta Y, Ding P, Zhang Y 2014. Identification of additional MAP kinases activated upon PAMP treatment. Plant Signal Behav, 9: e976155.
  • Pan J, Zhang M, Kong X, Xing X, Liu Y, Zhou Y, Liu Y, Sun L, Li D 2012. ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta, 235 (4): 661–676.
  • Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A 2016. Plant Defense Signaling and Responses Against Necrotrophic Fungal Pathogens. J Plant Growth Regul, 35: 1159–1174.
  • Peng Y, van Wersch R, Zhang Y 2018. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Mol Plant-Microbe Interact: MPMI, 31 (4): 403- 409.
  • Pitzschke A 2015. Modes of MAPK substrate recognition and control. Trends Plant Sci, 20 (1): 49–55.
  • Raghuram B, Sheikh AH, Rustagi Y, Sinha AK 2015. MicroRNA biogenesis factor DRB1 is a phosphorylation target of mitogen activated protein kinase MPK3 in both rice and Arabidopsis. FEBS J, 282: 521–536.
  • Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK 2010. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res, 17 (3): 139– 53.
  • Ray LB, Sturgill TW 1987. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci USA, 84 (6): 1502–1506.
  • Rodriguez MC, Petersen M, Mundy J 2010. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 61: 621–649.
  • Roux ME, Rasmussen MW, Palma K, Lolle S, Regué ÀM, Bethke G, Glazebrook J, Zhang W, Sieburth L, Larsen MR, Mundy J, Petersen M 2015. The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J, 34 (5): 593–608.
  • Schäfer M, Fischer C, Meldau S, Seebald E, Oelmuller R, Baldwin IT 2011. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol, 156: 1520– 1534.
  • Shin HY, You MK, Jeung JU, Shin JS 2014. OsMPK3 is a TEY-type rice MAPK in Group C and phosphorylates OsbHLH65, a transcription factor binding to the E-box element. Plant Cell Rep, 33: 1343–1353.
  • Sidonskaya E, Schweighofer A, Shubchynskyy V, Kammerhofer N, Hofmann J, Wieczorek K, Meskiene I 2016. Plant resistance against the parasitic nematode Heterodera schachtii is mediated by MPK3 and MPK6 kinases, which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis. J Exp Botany, 67 (1): 107–118.
  • Spallek T, Beck M, Ben Khaled S, Salomon S, Bourdais G, Schellmann S, Robatzek S 2013. ESCRT-I mediates FLS2 endosomal sorting and plant immunity. PLoS Genet, 9 (12): e1004035.
  • Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S 2017. Regulation of stomatal immunity by interdependent functions of a pathogen‐responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell, 29: 526–542.
  • Su J, Yang L, Zhu Q, Wu H, He Y, Liu Y, Xu J, Jiang D, Zhang S 2018. Active photosynthetic inhibition mediated MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol, 16: Article e2004122.
  • Sun T, Nitta Y, Zhang Q, Wu D, Tian H, Lee JS, Zhang Y 2018. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Rep, 19 (7): e45324.
  • Tang D, Wang G, Zhou JM 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell, 29: 618-637.
  • Tena G, Boudsocq M, Sheen J 2011. Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol, 14 (5): 519-29.
  • Wang F, Shang Y, Fan B, Yu JQ, Chen Z 2014. Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive mapk cascade in plant basal defense. PLoS Pathog, 10: e1004243.
  • Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, Zou T, Lu G 2015. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genom, 16 (1): 386.
  • Wang G, Wang T, Jia Z-H, Xuan J-P, Pan D-L, Guo Z-R, Zhang JY 2018. Genome-Wide Bioinformatics Analysis of MAPK Gene Family in Kiwifruit (Actinidia Chinensis). Int J Mol Sci, 19 (9): 2510.
  • Wankhede DP, Misra M, Singh P, Sinha AK 2013. Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches. PLoS One, 8 (5): e65011.
  • Wohlgemuth R, Liese A, Streit W 2017. Biocatalytic Phosphoryltion of Metabolites: Past, Present, and Future. Trends Biotechnol, 35 (5): 452-465.
  • Wu J, Wang J, Pan C, Guan X, Wang Y, Liu S, He Y, Chen J, Chen L, Lu G 2014. Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PloS One, 9 (7): e103032.
  • Xu J, Meng J, Meng X, Zhao Y, Liu J, Sun T, Liu Y, Wang Q, Zhang S 2016. Pathogen-Responsive MPK3 and MPK6 Reprogram the Biosynthesis of Indole Glucosinolates and Their Derivatives in Arabidopsis Immunity. Plant Cell, 28 (5): 1144–1162.
  • Yamada K, Yamaguchi K, Shirakawa T, Nakagami H, Mine A, Ishikawa K, Fujiwara M, Narusaka M, Narusaka Y, Ichimura K, Kobayashi Y, Matsui H, Nomura Y, Nomoto M, Tada Y, Fukao Y, Fukamizo T, Tsuda K, Shirasu K, Shibuya N, Kawasaki T 2016. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J, 35 (22): 2468–2483.
  • Yang X, Zhang L, Yang Y, Schmid M, Wang Y 2021. miRNA Mediated Regulation and Interaction between Plants and Pathogens. Int J Mol Sci, 22 (6): 2913.
  • Yuan M, Ngou B, Ding P, Xin XF 2021. PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol, 62:102030.
  • Zhang Z, Wu Y, Gao M, Zhang J, Kong Q, Liu Y, Ba H, Zhou J, Zhang Y 2012. Disruption of PAMP-inducd MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe, 11: 253–263.
  • Zhang T, Chen S, Harmon AC 2016. Protein-protein interactions in plant mitogen-activated protein kinase cascades. J Exp Bot, 67 (3): 607–618.
  • Zhao ZX, Feng Q, Liu PQ, He XR, Zhao JH, Xu YJ, Zhang LL, Huang YY, Zhao JQ, Fan J, Li Y, Xiao S, Wang WM 2021. RPW8.1 enhances the ethylene-signaling pathway to feedback- attenuate its mediated cell death and disease resistance in Arabidopsis. New Phytol, 229 (1): 516–531.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Agricultural Engineering
Journal Section Review Article
Authors

Berna Baş 0000-0003-2455-2849

Publication Date December 23, 2021
Submission Date June 29, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Baş, B. (2021). MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu. Manas Journal of Agriculture Veterinary and Life Sciences, 11(2), 199-207. https://doi.org/10.53518/mjavl.959168
AMA Baş B. MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu. MJAVL. December 2021;11(2):199-207. doi:10.53518/mjavl.959168
Chicago Baş, Berna. “MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu”. Manas Journal of Agriculture Veterinary and Life Sciences 11, no. 2 (December 2021): 199-207. https://doi.org/10.53518/mjavl.959168.
EndNote Baş B (December 1, 2021) MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu. Manas Journal of Agriculture Veterinary and Life Sciences 11 2 199–207.
IEEE B. Baş, “MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu”, MJAVL, vol. 11, no. 2, pp. 199–207, 2021, doi: 10.53518/mjavl.959168.
ISNAD Baş, Berna. “MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu”. Manas Journal of Agriculture Veterinary and Life Sciences 11/2 (December 2021), 199-207. https://doi.org/10.53518/mjavl.959168.
JAMA Baş B. MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu. MJAVL. 2021;11:199–207.
MLA Baş, Berna. “MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu”. Manas Journal of Agriculture Veterinary and Life Sciences, vol. 11, no. 2, 2021, pp. 199-07, doi:10.53518/mjavl.959168.
Vancouver Baş B. MAPK Modüllerinin Bitki İmmünitesindeki Yolculuğu. MJAVL. 2021;11(2):199-207.