Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuz stresi altında gelişen bitkilerden izole edilen endofit bakterilerin bazı bitki gelişimini teşvik etme mekanizmalarının ve hıyar fide gelişimine etkilerinin belirlenmesi

Yıl 2021, , 635 - 648, 07.12.2021
https://doi.org/10.37908/mkutbd.954216

Öz

Amaç: Endofit bakteriler (EB) stres altında gelişen bitkilerde, bitki gelişimi ve sağlığına katkı sağlayabilirler. Bu çerçevede çalışmanın amacı; tuzlu koşullarda yetiştirilen yabani bitkilerden endofitik bakterilerin izole edilmesi, bitki gelişimini teşvik etme (PGP) mekanizmalarının ve hıyar bitkisinin biyokütlesi üzerindeki etkilerini araştırmaktır.

Yöntem ve Bulgular: Çalışmamızda Van Gölü havzasında yer alan bir doğal tuz kaynağı bölgesinde gelişen bitkilerden EB izolatlarının izolasyonu yapılmıştır. Bu izolatların PGP özelliklerinin belirlenmesi amacıyla; fosforu çözündürme kabiliyeti, ACC-D aktivitesi, siderofor üretimi ve farklı tuz (NaCl) konsantrasyonlarında gelişme yetenekleri incelenmiştir. Bitki gelişimine etkileri ise iklim odası koşullarında hıyar bitkisi üzerinde test edilmiştir. Amaranthaceae; Poaceae, Zygophyllaceae, Fabaceae; Chenopodiaceae, Hypericaceae familyalarına ait 26 bitkilerden 62 EB izole edilmiştir. Bu izolatlardan %40’ının fosfataz aktivitesine, %97’sinin ise siderofor üretme yeteneğine sahip olduğu belirlenmiştir. İzolatların %92’sinin 0,85 M de, %58’inin 1,28 M de, %8’inin 1,7 M de ve yalnızca bir izolatın ise 2.56 M NaCl varlığında gelişebildiği tespit edilmiştir. Bazı EB izolatlarının bitki sürgün ve kök yaş kuru ağırlığında önemli düzeyde artış sağladığı belirlenmiştir.

Genel Yorum: Doğada stres altında gelişen bitkilerin, olumsuz çevre koşullarında mücadelelerine katkı yapacak, bitki sağlığı ve gelişimlerini destekleyebilecek bakterilere ev sahipliği yönünden oldukça yüksek potansiyele sahip oldukları belirlenmiştir.

Çalışmanın Önemi ve Etkisi: Belirli karakterlere sahip, stres altında hayatta kalabilecek EB izolatların elde edilmesi için yapılan çalışmada stres altında gelişen bitkilerin tercih edilmesinin başarı şansını arttırabileceği gözlenmiştir.

Destekleyen Kurum

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Başkanlığı

Proje Numarası

FYL-2019-7928

Teşekkür

Bu çalışma, Van yüzüncü Yıl Üniversitesi, Bilimsel Araştırma Projeleri Başkanlığı tarafından FYL-2019-7928 No’lu proje olarak desteklenmiştir.

Kaynakça

  • Akköprü A, Çakar K, Husseini A (2018) Effects of Endophytic Bacteria on Disease and Growth in Plants under Biotic Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28(2): 200-208.
  • Antoun, H. & Prévost, D. (2006). Ecology of Plant Growth Promoting. IN: Z. A. Siddiqui. (Eds) PGPR: Biocontrol and Biofertilization (pp 1-39). Netherlands: Springer.
  • Azevedo JL, Maccheroni Jr W, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 3, 15-16.
  • Babier Y, Akköprü A (2020). Çeşitli Kültür Bitkilerinden İzole Edilen Endofitik Bakterilerin Karakterizasyonu ve Bitki Patojeni Bakterilere Karşı Antagonistik Etkilerinin Belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 30 (3): 521-534. DOI: 10.29133/yyutbd.727138.
  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Current opinion in biotechnology, 27, 30-37.
  • Cornelis P (2010) Iron Uptake and Metabolism in Pseudomonads. Applied Microbiology and Biotechnology 86: 1637–1645
  • Dias A, Costa F, Andreote F, Lacava P, Teixeira M, Assumpcao L (2009) Isolation of Micropropagated Strawberry Endophytic Bacteria and Assessment Of Their Potential For Plant Growth Promotion. World Journal of Microbiology & Biotechnology 25: 189-195
  • Etesami H, Maheshwari DK (2018) Use of Plant Growth Promoting Rhizobacteria (Pgprs) With Multiple Plant Growth Promoting Traits İn Stress Agriculture: Action Mechanisms And Future Prospects. Ecotoxicol Environ Saf 156: 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
  • Fakhraei D (2015) Endofitik Bakterilerin Hıyar Bitkilerinde Dayanıklılığı Uyarma Yoluyla Fusarium Solgunluğuna Etkililiğinin Araştırılması. EÜ. Fen Bilimleri Enstitüsü. Doktora Tezi, 139 sy.
  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic Bacteria İn Sunflower (Helianthus Annuus L.): İsolation, Characterization, And Production Of Jasmonates And Abscisic Acid İn Culture Medium. Applied Microbiology and Biotechnology 76: 1145-1152
  • Gamalero E, Favale N, Bona E, Novello G, Cesaro P, Massa N, Glick BR, Orozco-Mosqueda MC, Berta G, Lingua G (2020) "Screening of Bacterial Endophytes Able to Promote Plant Growth and Increase Salinity Tolerance" Appl. Sci. 10, no. 17: 5767. https://doi.org/10.3390/app10175767
  • Gilmour D (1990) Halotolerant and Halophilic Microorganisms. In: Microbiology of Extreme Environments. Edwards C. (Ed.). McGraw – Hill NY USA, 1990, 147-177.
  • Gu S, Yang T, Shao Z, Wang T, Cao K, Jousset A, Friman V-P, Mallon C, Mei X, Wei Z, Xu Y, Shen Q, Pommier T. (2020) Siderophoremediated İnteractions Determine The Disease Suppressiveness of Microbial Consortia. mSystems 5:e00811-19.
  • Hallmann J, Quadt-Hallmann A, Mahaffee, WF, Kloepper, JW (1997) Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895-914.
  • Hardoim P, Nissinen R, van Elsas JD (2012) Ecology of bacterial endophytes in sustainable agriculture. In Bacteria in agrobiology: plant probiotics (pp. 97-126). Springer, Berlin, Heidelberg.
  • Jha B, Gontia I, Hartmann A (2012) The Roots of The Halophyte Salicornia Brachiata are A Source of New Halo Tolerant Diazotrophic Bacteria with Plant Growth-Promoting Potential. Plant and Soil, 356: 265-277.
  • Kuklinsky-Sobral J, Araujo W, Mendes R, Geraldi I, Pizzirani-Kleiner A, Azevedo, J (2004) Isolation and Characterization of Soybean-associated Bacteria and Their Potential for Plant Growth Promotion. Environmental Microbiology 6: 1244-1251.
  • Kushner DJ (1993) Growth and Nutrition of Halophilic Bacteria. The Biology of Halophilic Bacteria. R.H. Vreeland and L.I. Hochstein (eds). CRC Press.Boca RatonFlorida, 87-104.
  • Lee S, Flores-Encarnación M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-Acetic Acid Biosynthesis İs Deficient in Gluconacetobacter Diazotrophicus Strains With Mutations İn Cytochrome C Biogenesis Genes. Journal of Bacteriology, 186: 5384-5391.
  • Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of Aerobic Heterotropic Taxa İsolated From Four Root Domains of Mature Sugar Beet (Beta vulgaris). FEMS Microbiol Ecol 21: 231–242
  • Ma B, Gong JA (2013) Meta-Analysis of The Publicly Available Bacterial and Archaeal Sequence Diversity in Saline Soils. World J Microbiol Biotechnol 29: 2325–2334. https://doi.org/10.1007/s11274-013-1399-9
  • Maggini V, Mengoni A, Gallo ER (2019) Tissue Specificity and Differential Effects on İn Vitro Plant Growth of Single Bacterial Endophytes İsolated From The Roots, Leaves and Rhizospheric Soil of Echinacea purpurea. BMC Plant Biol 19: 284.
  • Mahmood A, Kataoka R (2020) Metabolite Profiling Reveals A Complex Response of Plants To Application of Plant Growth-Promoting Endophytic Bacteria. Microbiological Research, 234: 126421.
  • Manjunatha BS, Asha AD, Nivetha N, Bandeppa, Govindasamy V, Rathi M.S, Paul S (2017) Evaluation of Endophytic Bacteria for their Influence on Plant Growth and Seed Germination under Water Stress Conditions. Int. J. Curr. Microbiol. App. Sci. 6(11): 4061-4067. https://doi.org/10.20546/ijcmas.2017.611.475
  • Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological Applications of Bacterial Endophytes. Curr. Biotechnol 3: 60–75.
  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015) Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Up take in Polluted Marshes Soils. Front.Microbiol. 6: 1450. 10.3389/fmicb.2015.01450
  • Navarro‐Torre S, Barcia‐Piedras JM, Mateos‐Naranjo E, Redondo‐Gómez S, Camacho M, Caviedes M. A, Rodríguez‐Llorente ID (2017) Assessing The Role of Endophytic Bacteria in The Halophyte Arthrocnemum Macrostachyum Salt Tolerance. Plant Biology, 19(2): 249-256
  • Olur Ü (2020) Tuzlu Ortamda Gelişen Bitkilerden İzole Edilen Endofit Bakterilerin Hıyar Bitkisinde Köşeli Yaprak Leke Hastalığı (Pseudomonas syringae pv. lacrymans), Tuz Stresi ve Bitki Gelişimine Etkileri. Van yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma Anabilim Dalı, Yüksek Lisans Tezi, 87 sy.
  • Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa TM (2010) Isolation and Characterization of Plant Growth Promoting Endophytic Bacterial İsolates From Root Nodule of Lespedeza sp. Biology and Fertility of Soils 46: 807-816
  • Penrose DM, Glick BR (2003) Methods For İsolating and Characterizing ACC Deaminase-Containing Plant Growth-Promoting Rhizobacteria. Physiologia Plantarum, 118: 10-15.
  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.
  • Puente M, Li C, Bashan Y (2009) Rock-Degrading Endophytic Bacteria İn Cacti. Environmental and Experimental Botany, 66: 389-401
  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of Siderophoreproducing Bacteria For İmproving Heavy Metal Phytoextraction, Trends Biotechnol. 28: 142–149.
  • Remonsellez F, Castro-Severyn J, Pardo-Esté C, Aguilar P, Fortt J, Salinas C, Barahona S, León J, Fuentes B, Areche C, Hernández KL, Aguayo D, Saavedra CP (2018) Characterization and Salt Response in Recurrent Halotolerant Exiguobacterium sp. SH31 Isolated From Sediments of Salar de Huasco, Chilean Altiplano. Front. Microbiol. 9: 2228.
  • Roberts, MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline systems, 1(1), 1-30
  • Romano I, Ventorino V, Pepe O (2020) Effectiveness of Plant Beneficial Microbes: Overview of the Methodological Approaches for the Assessment of Root Colonization and Persistence. Front. Plant Sci. 11:6. doi: 10.3389/fpls.2020.00006.
  • Rosenblueth, M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 827–837.
  • Ruginescu R, Gomoiu I, Popescu O, Cojoc R, Neagu S, Lucaci I, Batrinescu-Moteau C, Enache M (2020) Bioprospecting for Novel Halophilic and Halotolerant Sources of Hydrolytic Enzymes in Brackish, Saline and Hypersaline Lakes of Romania. Microorganisms 8, no. 12: 1903.
  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial Endophytes. Recent Developmentand Applications. FEMS Microbiol. Lett. 278:1-9
  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 2011, 1-30.
  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant Growth-Promoting Bacterial Endophytes. Microbiological Research, 183: 92-99.
  • Schaad NW, Jones BJ, Chun W (2001) Laboratory Guide for Identification Plant Pathogenic Bacteria, APS Press, USA
  • Shanmugaiah V, Nithya K, Harikrishnan H, Jayaprakashvel M, Balasubramanian N (2015) Biocontrol Mechanisms of Siderophores against Bacterial Plant Pathogens in: Kannan, V. R., & Bastas, K. K. (Eds.). Sustainable Approaches to Controlling Plant Pathogenic Bacteria. CRC press.
  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant and Soil, 253, 381-390.
  • Szymańska S, Borruso L, Brusetti L, Hulisz P, Furtado B, Hrynkiewicz K (2018) Bacterial Microbiome of Root-Associated Endophytes of Salicornia Europaea İn Correspondence To Different Levels Of Salinity. Environ Sci Pollut Res Int. 25(25):25420-25431. doi: 10.1007/s11356-018-2530-0. Epub 2018 Jun 27. PMID: 29951760; PMCID: PMC6133108.
  • Thomas P (2004) A Three-Step Screening Procedure For Detection of Covert and Endophytic Bacteria in Plant Tissue Cultures. Current Science, 67-72.
  • Ullah A, Mushtaq H, Ali U, Hakim AE, Mubeen S, Chaudhary HJ (2018) Screening, İsolation, Biochemical and Plant Growth Promoting Characterization of Endophytic Bacteria. Microbiol. Curr. Res, 2(3): 62-68.
  • Zhao L, Xu, Y, Lai XH, Shan C, Deng Z and Ji Y (2015) Screening and Characterization of Endophytic Bacillus and Paenibacillus Strains From Medicinal Plant Lonicera Japonica For Use As Potential Plant Growth Promoters. Brazilian Journal of Microbiology, 46(4): 977-989.
  • Zinniel DK, Lambrecht P, Harris BN (2002) Isolation and Characterization of Endophytic Colonizing Bacteria From Agronomic Crops And Prairie Plant. Appl Environ Microbiol. 68: 2198–2208.

Determination of some plant growth promoting mechanisms of endophytic bacteria isolated from plants grown under salt stress and their effects on cucumber seedling growth

Yıl 2021, , 635 - 648, 07.12.2021
https://doi.org/10.37908/mkutbd.954216

Öz

Aims: Endophytic bacteria (EB) may contribute to plant growth and health in plants growing under stress. In this context, the study aimed to isolate endophytic bacteria from wild plants grown under saline conditions and determine plant growth-promoting (PGP) mechanisms and evaluate their effects on cucumber plant biomass.

Methods and Results: Different isolates of EB were isolated from plants growing in a natural salt source area in the Lake Van basin. In order to determine the PGP properties of these isolates; ability to dissolve phosphate, ACC-D activity, siderophore production and growth at different salt (NaCl) concentrations of these isolates were investigated. Their effects on plant growth were tested on cucumber plants under climatic chamber conditions. The 62 EBs were isolated from 26 plants belonging to Amaranthaceae, Poaceae, Zygophyllaceae, Fabaceae, and Chenopodiaceae, Hypericaceae families. It was determined that 40% of these isolates had phosphatase activity and 97% had the ability to produce siderephores. Furthermore, it was determined that 92% of the isolates could grow at 0.85M, 58% at 1.28M, 8% at 1.7M and only one isolate could grow at 2.56M of NaCl concentration. Some EB isolates significantly increased the plant shoot and root fresh and dry weight.

Conclusions: Plants growing under stress in nature have a very high potential in terms of hosting bacteria that can contribute to their struggle in adverse environmental conditions and support plant health and growth.

Significance and Impact of the Study: Obtained PGPR isolates with certain characters able to survive under stress, it has been observed that the preference of plants growing under pressure may increase the chance of success.

Proje Numarası

FYL-2019-7928

Kaynakça

  • Akköprü A, Çakar K, Husseini A (2018) Effects of Endophytic Bacteria on Disease and Growth in Plants under Biotic Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28(2): 200-208.
  • Antoun, H. & Prévost, D. (2006). Ecology of Plant Growth Promoting. IN: Z. A. Siddiqui. (Eds) PGPR: Biocontrol and Biofertilization (pp 1-39). Netherlands: Springer.
  • Azevedo JL, Maccheroni Jr W, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 3, 15-16.
  • Babier Y, Akköprü A (2020). Çeşitli Kültür Bitkilerinden İzole Edilen Endofitik Bakterilerin Karakterizasyonu ve Bitki Patojeni Bakterilere Karşı Antagonistik Etkilerinin Belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 30 (3): 521-534. DOI: 10.29133/yyutbd.727138.
  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Current opinion in biotechnology, 27, 30-37.
  • Cornelis P (2010) Iron Uptake and Metabolism in Pseudomonads. Applied Microbiology and Biotechnology 86: 1637–1645
  • Dias A, Costa F, Andreote F, Lacava P, Teixeira M, Assumpcao L (2009) Isolation of Micropropagated Strawberry Endophytic Bacteria and Assessment Of Their Potential For Plant Growth Promotion. World Journal of Microbiology & Biotechnology 25: 189-195
  • Etesami H, Maheshwari DK (2018) Use of Plant Growth Promoting Rhizobacteria (Pgprs) With Multiple Plant Growth Promoting Traits İn Stress Agriculture: Action Mechanisms And Future Prospects. Ecotoxicol Environ Saf 156: 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
  • Fakhraei D (2015) Endofitik Bakterilerin Hıyar Bitkilerinde Dayanıklılığı Uyarma Yoluyla Fusarium Solgunluğuna Etkililiğinin Araştırılması. EÜ. Fen Bilimleri Enstitüsü. Doktora Tezi, 139 sy.
  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic Bacteria İn Sunflower (Helianthus Annuus L.): İsolation, Characterization, And Production Of Jasmonates And Abscisic Acid İn Culture Medium. Applied Microbiology and Biotechnology 76: 1145-1152
  • Gamalero E, Favale N, Bona E, Novello G, Cesaro P, Massa N, Glick BR, Orozco-Mosqueda MC, Berta G, Lingua G (2020) "Screening of Bacterial Endophytes Able to Promote Plant Growth and Increase Salinity Tolerance" Appl. Sci. 10, no. 17: 5767. https://doi.org/10.3390/app10175767
  • Gilmour D (1990) Halotolerant and Halophilic Microorganisms. In: Microbiology of Extreme Environments. Edwards C. (Ed.). McGraw – Hill NY USA, 1990, 147-177.
  • Gu S, Yang T, Shao Z, Wang T, Cao K, Jousset A, Friman V-P, Mallon C, Mei X, Wei Z, Xu Y, Shen Q, Pommier T. (2020) Siderophoremediated İnteractions Determine The Disease Suppressiveness of Microbial Consortia. mSystems 5:e00811-19.
  • Hallmann J, Quadt-Hallmann A, Mahaffee, WF, Kloepper, JW (1997) Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895-914.
  • Hardoim P, Nissinen R, van Elsas JD (2012) Ecology of bacterial endophytes in sustainable agriculture. In Bacteria in agrobiology: plant probiotics (pp. 97-126). Springer, Berlin, Heidelberg.
  • Jha B, Gontia I, Hartmann A (2012) The Roots of The Halophyte Salicornia Brachiata are A Source of New Halo Tolerant Diazotrophic Bacteria with Plant Growth-Promoting Potential. Plant and Soil, 356: 265-277.
  • Kuklinsky-Sobral J, Araujo W, Mendes R, Geraldi I, Pizzirani-Kleiner A, Azevedo, J (2004) Isolation and Characterization of Soybean-associated Bacteria and Their Potential for Plant Growth Promotion. Environmental Microbiology 6: 1244-1251.
  • Kushner DJ (1993) Growth and Nutrition of Halophilic Bacteria. The Biology of Halophilic Bacteria. R.H. Vreeland and L.I. Hochstein (eds). CRC Press.Boca RatonFlorida, 87-104.
  • Lee S, Flores-Encarnación M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-Acetic Acid Biosynthesis İs Deficient in Gluconacetobacter Diazotrophicus Strains With Mutations İn Cytochrome C Biogenesis Genes. Journal of Bacteriology, 186: 5384-5391.
  • Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of Aerobic Heterotropic Taxa İsolated From Four Root Domains of Mature Sugar Beet (Beta vulgaris). FEMS Microbiol Ecol 21: 231–242
  • Ma B, Gong JA (2013) Meta-Analysis of The Publicly Available Bacterial and Archaeal Sequence Diversity in Saline Soils. World J Microbiol Biotechnol 29: 2325–2334. https://doi.org/10.1007/s11274-013-1399-9
  • Maggini V, Mengoni A, Gallo ER (2019) Tissue Specificity and Differential Effects on İn Vitro Plant Growth of Single Bacterial Endophytes İsolated From The Roots, Leaves and Rhizospheric Soil of Echinacea purpurea. BMC Plant Biol 19: 284.
  • Mahmood A, Kataoka R (2020) Metabolite Profiling Reveals A Complex Response of Plants To Application of Plant Growth-Promoting Endophytic Bacteria. Microbiological Research, 234: 126421.
  • Manjunatha BS, Asha AD, Nivetha N, Bandeppa, Govindasamy V, Rathi M.S, Paul S (2017) Evaluation of Endophytic Bacteria for their Influence on Plant Growth and Seed Germination under Water Stress Conditions. Int. J. Curr. Microbiol. App. Sci. 6(11): 4061-4067. https://doi.org/10.20546/ijcmas.2017.611.475
  • Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological Applications of Bacterial Endophytes. Curr. Biotechnol 3: 60–75.
  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015) Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Up take in Polluted Marshes Soils. Front.Microbiol. 6: 1450. 10.3389/fmicb.2015.01450
  • Navarro‐Torre S, Barcia‐Piedras JM, Mateos‐Naranjo E, Redondo‐Gómez S, Camacho M, Caviedes M. A, Rodríguez‐Llorente ID (2017) Assessing The Role of Endophytic Bacteria in The Halophyte Arthrocnemum Macrostachyum Salt Tolerance. Plant Biology, 19(2): 249-256
  • Olur Ü (2020) Tuzlu Ortamda Gelişen Bitkilerden İzole Edilen Endofit Bakterilerin Hıyar Bitkisinde Köşeli Yaprak Leke Hastalığı (Pseudomonas syringae pv. lacrymans), Tuz Stresi ve Bitki Gelişimine Etkileri. Van yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma Anabilim Dalı, Yüksek Lisans Tezi, 87 sy.
  • Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa TM (2010) Isolation and Characterization of Plant Growth Promoting Endophytic Bacterial İsolates From Root Nodule of Lespedeza sp. Biology and Fertility of Soils 46: 807-816
  • Penrose DM, Glick BR (2003) Methods For İsolating and Characterizing ACC Deaminase-Containing Plant Growth-Promoting Rhizobacteria. Physiologia Plantarum, 118: 10-15.
  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.
  • Puente M, Li C, Bashan Y (2009) Rock-Degrading Endophytic Bacteria İn Cacti. Environmental and Experimental Botany, 66: 389-401
  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of Siderophoreproducing Bacteria For İmproving Heavy Metal Phytoextraction, Trends Biotechnol. 28: 142–149.
  • Remonsellez F, Castro-Severyn J, Pardo-Esté C, Aguilar P, Fortt J, Salinas C, Barahona S, León J, Fuentes B, Areche C, Hernández KL, Aguayo D, Saavedra CP (2018) Characterization and Salt Response in Recurrent Halotolerant Exiguobacterium sp. SH31 Isolated From Sediments of Salar de Huasco, Chilean Altiplano. Front. Microbiol. 9: 2228.
  • Roberts, MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline systems, 1(1), 1-30
  • Romano I, Ventorino V, Pepe O (2020) Effectiveness of Plant Beneficial Microbes: Overview of the Methodological Approaches for the Assessment of Root Colonization and Persistence. Front. Plant Sci. 11:6. doi: 10.3389/fpls.2020.00006.
  • Rosenblueth, M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 827–837.
  • Ruginescu R, Gomoiu I, Popescu O, Cojoc R, Neagu S, Lucaci I, Batrinescu-Moteau C, Enache M (2020) Bioprospecting for Novel Halophilic and Halotolerant Sources of Hydrolytic Enzymes in Brackish, Saline and Hypersaline Lakes of Romania. Microorganisms 8, no. 12: 1903.
  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial Endophytes. Recent Developmentand Applications. FEMS Microbiol. Lett. 278:1-9
  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 2011, 1-30.
  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant Growth-Promoting Bacterial Endophytes. Microbiological Research, 183: 92-99.
  • Schaad NW, Jones BJ, Chun W (2001) Laboratory Guide for Identification Plant Pathogenic Bacteria, APS Press, USA
  • Shanmugaiah V, Nithya K, Harikrishnan H, Jayaprakashvel M, Balasubramanian N (2015) Biocontrol Mechanisms of Siderophores against Bacterial Plant Pathogens in: Kannan, V. R., & Bastas, K. K. (Eds.). Sustainable Approaches to Controlling Plant Pathogenic Bacteria. CRC press.
  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant and Soil, 253, 381-390.
  • Szymańska S, Borruso L, Brusetti L, Hulisz P, Furtado B, Hrynkiewicz K (2018) Bacterial Microbiome of Root-Associated Endophytes of Salicornia Europaea İn Correspondence To Different Levels Of Salinity. Environ Sci Pollut Res Int. 25(25):25420-25431. doi: 10.1007/s11356-018-2530-0. Epub 2018 Jun 27. PMID: 29951760; PMCID: PMC6133108.
  • Thomas P (2004) A Three-Step Screening Procedure For Detection of Covert and Endophytic Bacteria in Plant Tissue Cultures. Current Science, 67-72.
  • Ullah A, Mushtaq H, Ali U, Hakim AE, Mubeen S, Chaudhary HJ (2018) Screening, İsolation, Biochemical and Plant Growth Promoting Characterization of Endophytic Bacteria. Microbiol. Curr. Res, 2(3): 62-68.
  • Zhao L, Xu, Y, Lai XH, Shan C, Deng Z and Ji Y (2015) Screening and Characterization of Endophytic Bacillus and Paenibacillus Strains From Medicinal Plant Lonicera Japonica For Use As Potential Plant Growth Promoters. Brazilian Journal of Microbiology, 46(4): 977-989.
  • Zinniel DK, Lambrecht P, Harris BN (2002) Isolation and Characterization of Endophytic Colonizing Bacteria From Agronomic Crops And Prairie Plant. Appl Environ Microbiol. 68: 2198–2208.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ümmügülsüm Olur Bu kişi benim 0000-0002-3693-509X

Ceylan Uçar Bu kişi benim 0000-0001-9056-9353

Ahmet Akköprü 0000-0002-1526-6093

Proje Numarası FYL-2019-7928
Yayımlanma Tarihi 7 Aralık 2021
Gönderilme Tarihi 18 Haziran 2021
Kabul Tarihi 24 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Olur, Ü., Uçar, C., & Akköprü, A. (2021). Tuz stresi altında gelişen bitkilerden izole edilen endofit bakterilerin bazı bitki gelişimini teşvik etme mekanizmalarının ve hıyar fide gelişimine etkilerinin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26(3), 635-648. https://doi.org/10.37908/mkutbd.954216

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download