Research Article
BibTex RIS Cite

Effect of field bindweed (Convolvulus arvensis) addition on fermentation and digestion level in lamb diets

Year 2024, Volume: 29 Issue: 1, 47 - 54, 08.04.2024

Abstract

In this study, field bindweed (Convolvulus arvensis) was used as a coarse forage source, replacing alfalfa hay at increasing levels in lamb rations to achieve iso-caloric and iso-nitrogenous conditions with 17% crude protein and 2500 kcal/kg dry matter. The gas production (GP), methane production, methane percentage, true digestible dry matter (TDDM), partitioning factor (PF), microbial protein (MP), microbial protein synthesis efficiency (MPSE), and true digestion degree (TDD) values of the rations were determined using the in vitro gas production technique. The 24-hour gas production values of the rations ranged from 91.4 to 95 ml (500 mg DM). Methane production varied between 12.8 and 15.68 ml. The methane (ml) and methane (%) of the rations were found to be statistically significant (P<0.01). In the study, TDDM, PF, MP, MPSE, and TDD (%) values were found to be in the range of 297.22 mg – 302.63 mg, 3.13 – 3.40, 88.21 mg – 110.17 mg, 29.68% - 35.28%, and 64.72% - 67.31%, respectively. Pearson's correlation analysis of the rations revealed a negative relationship between methane (ml) and methane (%) with PF, MP, MPSE, and TDD values. A positive correlation was found among TDDM, PF, MP, MPSE, and TDD values (P <0.01). The use of field bindweed instead of alfalfa hay reduced methane production by 18.36%. To observe the impact of field bindweed on dry matter intake and live weight gain in ruminant animals, further in vivo studies are required.

References

  • Association of Official Analytical Chemists (AOAC). (1990). Official Method of Analysis. 15th. ed. Washington DC. USA, 66-88.
  • Blümmel, M., & Lebzien, P. (2001).Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Live Production Science, 68 (2-3), 107-117. https://doi.org/10.1016/S0301-6226(00)00241-4
  • Blümmel, M., Cone, J.W., Van Gelder, A.H., Nshalai, I., Umunna, N.N., Makkar, H.P.S., & Becker, K. (2005). Prediction of forage intake using in vitro gas production methods: Comparison of multiphase fermentation kinetics measured in an automated gas test, and combined gas volume and substrate degradability measurements in a manual syringe system. Animal Feed Science and Technology, 123, 517-526. https://doi.org/10.1016/j.anifeedsci.2005.04.040
  • Blümmel, M., Makkar, H.P.S., Chisanga, G., Mtimuni, J., & Becker, K. (1997). The prediction of dry matter intake of temperate and tropical roughages from in vitro digestibility/gas-production data, and the dry matter intake and in vitro digestibility of African roughages in relation to ruminant liveweight gain. Animal Feed Science and Technology, 69 (1-3), 131-141. https://doi.org/10.1016/S0377-8401(97)81628-8
  • Boğa, M., Avcı, B.C., & Kılıç, H.N. (2022). Evaluation of some commercial food rations in terms of chemical composition, methane production, net energy and organic substance digestibility. Turkish Journal of Agriculture-Food Science and Technology, 10 (6), 1095-1101.
  • Canbolat, Ö. (2012). Potential nutritive value of field binweed (Convolvulus arvensis L.) hay harvested at three different maturity stages. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18 (2), 331-335.
  • Duncan, D.B. (1955). Multiple range and multiple F tests. Biometrics, 11 (1), 1-42. https://doi.org/10.2307/3001478
  • IPCC. (2001). Climate change, Intergoverment Panel on Climate Change 2001. The Scientific Basis. Cambridge University Press, Cambridge, UK.
  • Goel, G., Makkar, H.P.S., & Becker, K. (2008). Effect of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147 (1-3), 72-89. https://doi.org/10.1016/j.anifeedsci.2007.09.010
  • Johnson, K.A., & Johnson, D.E. (1995). Methane emissions from cattle. Journal of Animal Science, 73 (8), 2483-2492. https://doi.org/10.2527/1995.7382483x
  • Jurado-Expósito, M., López-Granados, F., Atenciano, S., Garcia-Torres, L., & González-Andújar, J.L. (2003). Discrimination of weed seedlings, wheat (Triticum aestivum) stubble and sunflower (Helianthus annuus) by near-infrared reflectance spectroscopy (NIRS). Crop Protection, 22 (10), 1177-1180. https://doi.org/10.1016/S0261-2194(03)00159-5
  • Klieve, A.V., & Hegarty, R.S. (1999). Opportunities of biological control of ruminant methanogenesis. Australian Journal Agricultural Research, 50, 1315-1319.
  • Liebman, M., Mohler, C.L., & Staver, C.P. (2001). Ecological Management of Agricultural Weeds. Cambridge University Press.
  • López, S., Makkar, H.P., & Soliva, C.R. (2010). Screening plants and plant products for methane inhibitors. In in vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies (pp. 191-231). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3297-3_10
  • Makkar, H.P.S., Blummel, M., & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73 (6), 897-913. https://doi.org/10.1079/BJN19950095
  • Menke, K.H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
  • Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93 (1), 217-222. https://doi.org/10.1017/S0021859600086305
  • NRC. (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids National Academy of Science.
  • Özkan, Ç.Ö., Cengiz, T., Yanık, M., Evlice, S., Selçuk, B., Ceren, B., & Kamalak, A. (2020). Ruminant hayvan beslemede kullanılan bazı kaba ve kesif yemlerin in vitro gaz üretiminin, metan üretiminin, sindirim derecesinin ve mikrobiyal protein üretiminin belirlenmesi. Black Sea Journal of Agriculture, 3 (1), 56-60.
  • Russell, J.B., & Rychlik, J.L. (2001). Factors that alter rumen microbial ecology. Science, 292 (5519), 1119-1122. https://doi.org/10.1126/science.1058830
  • Sampath, K.T., Wood, C.D., & Prasad, C.S. (1995). Effect of urea and by‐products on the in‐vitro fermentation of untreated and urea treated finger millet (Eleusine coracana) straw. Journal of the Science of Food and Agriculture, 67 (3), 323-328. https://doi.org/10.1002/jsfa.2740670308
  • Schutte, B.J., & Lauriault, L. (2015). Nutritive value of field bindweed (Convolvulus arvensis) roots as a potential livestock feed and the effect of Aceria malherbae on root components. Weed Technology, 29 (2), 329-334. https://doi.org/10.1614/WT-D-14-00112.1
  • SPSS. (2011). IBM SPSS statistics for Windows, version20.0. New York: IBM Corp 440.
  • Van Soest, P.J. (1994). Nutritional Ecology of the Ruminant. Cornell University Press.
  • Vercoe, P.E., Makkar, H.P.S., Schlink, A., (Eds). (2010). In vitro screening of plant resources for extra nutritional attributes in ruminants: Nuclea rand related methodologies. Springer, London, New York. pp. 191-231. https://doi.org/10.1007/978-90-481-3297-3
  • Wolin, M.J. (1960). A theoretical rumen fermentation balance. Journal of Dairy Science, 43 (10), 1452-1459. https://doi.org/10.3168/jds.S0022-0302(60)90348-9

Tarla sarmaşığı (Convolvulus arvensis) otunun kuzu rasyonlarına ilavesinin fermantasyon ve sindirim dereceleri üzerine etkisi

Year 2024, Volume: 29 Issue: 1, 47 - 54, 08.04.2024

Abstract

Bu çalışmada kaba yem kaynağı olarak değerlendirilen tarla sarmaşığı otu (Convolvulus arvensis) artan seviyelerde kuzu rasyonlarına %17 HP, 2500 kcal/kg KM izo-kalorik ve izo-nitrojenik olacak şekilde yonca kuru otu yerine ikame edilmiştir. Rasyonların in vitro gaz üretim tekniği ile gaz üretimi (GÜ), metan üretimi, metan yüzdesi, gerçek sindirilebilir kuru madde (GSKM), partitioning faktör (PF), mikrobiyal protein (MP), mikrobiyal protein sentezleme etkinliği (MPSE) ve gerçek sindirim derecesi (GSD) değerleri belirlenmiştir. Rasyonların 24 saatlik gaz üretim değerleri 91.4 – 95 ml (500 mg KM) arasında değişmiştir. Metan üretimleri 12.8 ile 15.68 ml arasında oluşmuştur. Rasyonların metan (ml) ve metan (%)’si istatistiksel olarak önemli bulunmuştur (P<0.01). Araştırmadaki GSKM, PF, MP, MPSE ve GSD (%) değerleri sırasıyla 297.22 mg – 302,63 mg, 3.13 – 3.40, 88.21 mg – 110,17 mg, %29.68- %35.28, %64,72 – %67,31 arasında bulunmuştur. Rasyonların Pearson’s korelasyon analizi metan (ml) ve metan (%) ile PF, MP, MPSE ve GSD değerleri arasında negatif bir ilişki olduğu tespit edilmiştir. Rasyonlarda GSKM, PF, MP, MPSE ve GSD değerleri arasında ise pozitif bir ilişki bulunmuştur (P <0.01). Tarla sarmaşığı otu, yonca kuru otu yerine kullanılmasıyla metan üretimini % 18.36 düşürmüştür. Tarla sarmaşığı otunun ruminant hayvanlarda kuru madde alımına ve canlı ağırlık artışına etkisini görebilmek için in vivo çalışmalara ihtiyaç vardır.

References

  • Association of Official Analytical Chemists (AOAC). (1990). Official Method of Analysis. 15th. ed. Washington DC. USA, 66-88.
  • Blümmel, M., & Lebzien, P. (2001).Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Live Production Science, 68 (2-3), 107-117. https://doi.org/10.1016/S0301-6226(00)00241-4
  • Blümmel, M., Cone, J.W., Van Gelder, A.H., Nshalai, I., Umunna, N.N., Makkar, H.P.S., & Becker, K. (2005). Prediction of forage intake using in vitro gas production methods: Comparison of multiphase fermentation kinetics measured in an automated gas test, and combined gas volume and substrate degradability measurements in a manual syringe system. Animal Feed Science and Technology, 123, 517-526. https://doi.org/10.1016/j.anifeedsci.2005.04.040
  • Blümmel, M., Makkar, H.P.S., Chisanga, G., Mtimuni, J., & Becker, K. (1997). The prediction of dry matter intake of temperate and tropical roughages from in vitro digestibility/gas-production data, and the dry matter intake and in vitro digestibility of African roughages in relation to ruminant liveweight gain. Animal Feed Science and Technology, 69 (1-3), 131-141. https://doi.org/10.1016/S0377-8401(97)81628-8
  • Boğa, M., Avcı, B.C., & Kılıç, H.N. (2022). Evaluation of some commercial food rations in terms of chemical composition, methane production, net energy and organic substance digestibility. Turkish Journal of Agriculture-Food Science and Technology, 10 (6), 1095-1101.
  • Canbolat, Ö. (2012). Potential nutritive value of field binweed (Convolvulus arvensis L.) hay harvested at three different maturity stages. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18 (2), 331-335.
  • Duncan, D.B. (1955). Multiple range and multiple F tests. Biometrics, 11 (1), 1-42. https://doi.org/10.2307/3001478
  • IPCC. (2001). Climate change, Intergoverment Panel on Climate Change 2001. The Scientific Basis. Cambridge University Press, Cambridge, UK.
  • Goel, G., Makkar, H.P.S., & Becker, K. (2008). Effect of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147 (1-3), 72-89. https://doi.org/10.1016/j.anifeedsci.2007.09.010
  • Johnson, K.A., & Johnson, D.E. (1995). Methane emissions from cattle. Journal of Animal Science, 73 (8), 2483-2492. https://doi.org/10.2527/1995.7382483x
  • Jurado-Expósito, M., López-Granados, F., Atenciano, S., Garcia-Torres, L., & González-Andújar, J.L. (2003). Discrimination of weed seedlings, wheat (Triticum aestivum) stubble and sunflower (Helianthus annuus) by near-infrared reflectance spectroscopy (NIRS). Crop Protection, 22 (10), 1177-1180. https://doi.org/10.1016/S0261-2194(03)00159-5
  • Klieve, A.V., & Hegarty, R.S. (1999). Opportunities of biological control of ruminant methanogenesis. Australian Journal Agricultural Research, 50, 1315-1319.
  • Liebman, M., Mohler, C.L., & Staver, C.P. (2001). Ecological Management of Agricultural Weeds. Cambridge University Press.
  • López, S., Makkar, H.P., & Soliva, C.R. (2010). Screening plants and plant products for methane inhibitors. In in vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies (pp. 191-231). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3297-3_10
  • Makkar, H.P.S., Blummel, M., & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73 (6), 897-913. https://doi.org/10.1079/BJN19950095
  • Menke, K.H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
  • Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93 (1), 217-222. https://doi.org/10.1017/S0021859600086305
  • NRC. (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids National Academy of Science.
  • Özkan, Ç.Ö., Cengiz, T., Yanık, M., Evlice, S., Selçuk, B., Ceren, B., & Kamalak, A. (2020). Ruminant hayvan beslemede kullanılan bazı kaba ve kesif yemlerin in vitro gaz üretiminin, metan üretiminin, sindirim derecesinin ve mikrobiyal protein üretiminin belirlenmesi. Black Sea Journal of Agriculture, 3 (1), 56-60.
  • Russell, J.B., & Rychlik, J.L. (2001). Factors that alter rumen microbial ecology. Science, 292 (5519), 1119-1122. https://doi.org/10.1126/science.1058830
  • Sampath, K.T., Wood, C.D., & Prasad, C.S. (1995). Effect of urea and by‐products on the in‐vitro fermentation of untreated and urea treated finger millet (Eleusine coracana) straw. Journal of the Science of Food and Agriculture, 67 (3), 323-328. https://doi.org/10.1002/jsfa.2740670308
  • Schutte, B.J., & Lauriault, L. (2015). Nutritive value of field bindweed (Convolvulus arvensis) roots as a potential livestock feed and the effect of Aceria malherbae on root components. Weed Technology, 29 (2), 329-334. https://doi.org/10.1614/WT-D-14-00112.1
  • SPSS. (2011). IBM SPSS statistics for Windows, version20.0. New York: IBM Corp 440.
  • Van Soest, P.J. (1994). Nutritional Ecology of the Ruminant. Cornell University Press.
  • Vercoe, P.E., Makkar, H.P.S., Schlink, A., (Eds). (2010). In vitro screening of plant resources for extra nutritional attributes in ruminants: Nuclea rand related methodologies. Springer, London, New York. pp. 191-231. https://doi.org/10.1007/978-90-481-3297-3
  • Wolin, M.J. (1960). A theoretical rumen fermentation balance. Journal of Dairy Science, 43 (10), 1452-1459. https://doi.org/10.3168/jds.S0022-0302(60)90348-9
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Zootechny (Other)
Journal Section Araştırma Makalesi
Authors

Yakup Bilal 0000-0001-9785-5395

Bilal Selçuk 0000-0001-9136-5707

Tuğba Bakır 0000-0003-2185-7137

Hülya Akçam 0000-0002-6784-1782

Early Pub Date March 14, 2024
Publication Date April 8, 2024
Submission Date April 1, 2023
Acceptance Date October 19, 2023
Published in Issue Year 2024 Volume: 29 Issue: 1

Cite

APA Bilal, Y., Selçuk, B., Bakır, T., Akçam, H. (2024). Tarla sarmaşığı (Convolvulus arvensis) otunun kuzu rasyonlarına ilavesinin fermantasyon ve sindirim dereceleri üzerine etkisi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(1), 47-54.

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download