Research Article
BibTex RIS Cite

Genetic diversity analysis of sesame (Sesamum indicum L.) genotypes in Türkiye using SSR markers

Year 2025, Volume: 30 Issue: 2, 472 - 486, 21.08.2025
https://doi.org/10.37908/mkutbd.1645274

Abstract

This study aimed to analyze the genetic diversity of 25 different sesame (Sesamum indicum L.) genotypes cultivated in Türkiye, including 16 registered cultivars, 6 local populations, 1 Indian population adapted to the ecological conditions of Konya, and 2 genotypes of Indian origin, using SSR markers. Genetic diversity was assessed using 10 different SSR primers, resulting in a total of 79 polymorphic bands. The CUESTSSR02 primer was the most efficient one with high values for Polymorphic Allele Number (PA), Polymorphic Information Content (PIC), Expected Heterozygosity (He), and Marker Index (MI). Genetic relationships between genotypes were analyzed and visualized using a circular phylogenetic tree, PCoA, and a heatmap. The findings revealed that the local populations are genetically distinct from both registered cultivars and Indian genotypes. Notably, the Akören genotype was identified as genetically isolated from all other genotypes. This study highlights the crucial role of local populations in preserving and enhancing genetic diversity. The integration of Indian genotypes with local populations may contribute to the development of more resilient and productive cultivars. The findings emphasize that the effective use of genetic resources can support sustainable agriculture and improve agricultural performance.

Project Number

21401055

Thanks

This study was financially supported by the xxxxx University Scientific Research Projects Coordination Unit (Project No: 21401055).

References

  • Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., & Sorrells, M.E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36 (1), 181-186. https://doi.org/10.1139/g93-024
  • Andrade, P.B.d., Freitas, B.M., Rocha, E.E.d.M., Lima, J.A.d., & Rufino, L.L. (2014). Floral biology and pollination requirements of sesame (Sesamum indicum L.). Acta Scientiarum. Animal Sciences, 36 (1), 93-99. https://doi.org/10.4025/actascianimsci.v36i1.21838
  • Anggraeni, T., Fadilah, S., Kusnadi, J., & Basuki, S. (2022). The use of ISSR markers for clustering sesame genotypes based on geographical origin. IOP Conference Series: Earth and Environmental Science, 974, 012031.
  • Asekova, S., Kulkarni, K.P., Oh KiWon, O.K., Lee MyungHee, L.M., Oh EunYoung, O.E., Kim JungIn, K.J., Yeo UnSang, Y.U., Pae SukBok, P.S., Ha TaeJoung, H.T., & Kim SungUp, K.S. (2018). Analysis of molecular variance and population structure of sesame (Sesamum indicum L.) genotypes using simple sequence repeat markers. Plant Breeding and Biotechnology, 6, 321-336. https://doi.org/10.9787/PBB.2018.6.4.321
  • Ashfaq, M., Rani, K.J., Padmaja, D., Yadav, P., & Betha, U.K. (2024). Analysis of genetic diversity in sesame (Sesamum indicum L.) germplasm lines based on agro-morphological traits and SSR markers. Electronic Journal of Plant Breeding, 15 (4), 962-971. https://doi.org/10.37992/2024.1504.105
  • Ashri, A. (2006). Sesame (Sesamum indicum L.). Genetic Resources, Chromosome Engineering, and Crop Improvement: Oilseed Crops, 4, 231-289.
  • Bhattacharjee, M., Prakash, S., Roy, S., Soumen, S., Begum, T., & Dasgupta, T. (2020). SSR-based DNA fingerprinting of 18 elite Indian varieties of sesame (Sesamum indicum L.). The Nucleus, 63, 67-73. https://doi.org/10.1007/s13237-019-00290-3
  • Botstein, D., White, R.L., Skolnick, M., & Davis, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32 (3), 314-331. https://www.ncbi.nlm.nih.gov/pubmed/6247908
  • Chesnokov, Y.V., & Artemyeva, A. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Сельскохозяйственная биология, (5 (eng)), 571-578. https://doi.org/10.15389/agrobiology.2015.5.571eng
  • Cornea-Cipcigan, M., Pamfil, D., Sisea, C.R., & Margaoan, R. (2023). Characterization of Cyclamen genotypes using morphological descriptors and DNA molecular markers in a multivariate analysis. Frontiers in Plant Science, 14, 1100099. https://doi.org/10.3389/fpls.2023.1100099
  • Dossa, K., Wei, X., Zhang, Y., Fonceka, D., Yang, W., Diouf, D., Liao, B., Cisse, N., & Zhang, X. (2016). Analysis of genetic diversity and population structure of sesame accessions from Africa and Asia as major centers of its cultivation. Genes (Basel), 7 (4), 14. https://doi.org/10.3390/genes7040014
  • Doyle, J.J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15. https://doi.org/10016746787
  • Elston, R.C., Olson, J.M., & Palmer, L. (2002). Biostatistical genetics and genetic epidemiology (Vol. 1). John Wiley & Sons.
  • Emon, R.M., Sakib, M.N., Khatun, M.K., Malek, M.A., Haque, M.S., & Alam, M.A. (2023). Microsatellite marker assisted molecular and morpho-physiological genetic diversity assessment in 38 genotypes of sesame (Sesamum indicum L.). Journal of Phytology, 15, 43-51. https://doi.org/10.25081/jp.2023.v15.7902
  • Guo, X., & Elston, R.C. (1999). Linkage information content of polymorphic genetic markers. Human Heredity, 49 (2), 112-118. https://doi.org/10.1159/000022855
  • Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles, 44, 223-270.
  • Liang, J., Sun, J., Ye, Y., Yan, X., Yan, T., Rao, Y., Zhou, H., & Le, M. (2021). QTL mapping of PEG-induced drought tolerance at the early seedling stage in sesame using whole genome re-sequencing. PLoS One, 16 (2), e0247681. https://doi.org/10.1371/journal.pone.0247681
  • Liu, K., Goodman, M., Muse, S., Smith, J.S., Buckler, E., & Doebley, J. (2003). Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 165 (4), 2117-2128. https://doi.org/10.1093/genetics/165.4.2117
  • Meena, R., Singh, B., Meena, K., Meena, R., Singh, B., & Gurjar, P. (2018). Performance of front-line demonstrations on sesame (Sesamum indicum L.) in Karauli District of Rajasthan, India. International Journal of Current Microbiology and Applied Sciences, 7 (3), 1507-1511. https://doi.org/10.20546/ijcmas.2018.703.179
  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89 (3), 583-590. https://doi.org/10.1093/genetics/89.3.583
  • Porebski, S., Bailey, L.G., & Baum, B.R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15, 8-15. https://doi.org/10.1007/Bf02772108
  • Powell, W., Machray, G.C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1 (7), 215-222. https://doi.org/1360-1385(96)86898-1
  • Teklu, D.H., Shimelis, H., & Abady, S. (2022). Genetic improvement in sesame (Sesamum indicum L.): Progress and outlook: A review. Agronomy, 12 (9), 2144. https://doi.org/10.3390/agronomy12092144
  • Uncu, A.O., Gultekin, V., Allmer, J., Frary, A., & Doganlar, S. (2015). Genomic simple sequence repeat markers reveal patterns of genetic relatedness and diversity in sesame. Plant Genome, 8 (2), eplantgenome2014 2011 0087. https://doi.org/10.3835/plantgenome2014.11.0087
  • Williams, S.E., & Hoffman, E.A. (2009). Minimizing genetic adaptation in captive breeding programs: A review. Biological Conservation, 142 (11), 2388-2400. https://doi.org/10.1016/j.biocon.2009.05.034
  • Yaseen, G., Ahmad, M., Zafar, M., Akram, A., Sultana, S., Ahmed, S.N., & Kilic, O. (2021). Sesame (Sesamum indicum L.). In green sustainable process for chemical and environmental engineering and science (pp. 253-269). Elsevier. https://doi.org/10.1016/B978-0-12-821886-0.00005-1
  • Yepuri, V., Surapaneni, M., Kola, V.S.R., Vemireddy, L., Jyothi, B., Dineshkumar, V., Anuradha, G., & Siddiq, E. (2013). Assessment of genetic diversity in sesame (Sesamum indicum L.) genotypes, using EST-derived SSR markers. Journal of Crop Science and Biotechnology, 16 (2), 93-103. https://doi.org/10.1007/s12892-012-0116-9
  • Yi, L., Dong, Z., Lei, Y., Zhao, J., Xiong, Y., Yang, J., Xiong, Y., Gou, W., & Ma, X. (2021). Genetic diversity and molecular characterization of worldwide prairie grass (Bromus catharticus Vahl) accessions using SRAP markers. Agronomy, 11 (10), 2054. https://doi.org/10.3390/agronomy11102054
  • Zhang, H., Wei, L., Miao, H., Zhang, T., & Wang, C. (2012). Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics, 13, 316. https://doi.org/10.1186/1471-2164-13-316

Türkiye’deki susam (Sesamum indicum L.) genotiplerinin genetik çeşitliliğinin SSR markörleri ile analizi

Year 2025, Volume: 30 Issue: 2, 472 - 486, 21.08.2025
https://doi.org/10.37908/mkutbd.1645274

Abstract

Bu çalışma, Türkiye’de yetiştirilen 16 tescilli çeşit, 6 yerel popülasyon, Konya ekolojik koşullarına uyum sağlamış 1 Hint popülasyonu ve Hindistan kökenli 2 genotip olmak üzere toplam 25 farklı susam genotipinin genetik çeşitliliğini SSR (Simple Sequence Repeat) markörleri kullanarak analiz etmeyi amaçlamıştır. Araştırmada, 10 farklı SSR primeri ile yapılan genetik çeşitlilik değerlendirmesi sonucunda toplam 79 polimorfik bant tespit edilmiştir. CUESTSSR02 primeri, yüksek Polimorfik Allel Sayısı (PA), Polimorfik Bilgi İçeriği (PIC), Beklenen Heterozigotluk (He) ve Markör İndeksi (MI) değerleri ile en verimli primer olarak öne çıkmıştır.Genotipler arasındaki genetik ilişkiler, dairesel filogenetik ağaç, Temel Koordinatlar Analizi (TKoA) ve ısı haritası gibi yöntemlerle görselleştirilerek analiz edilmiştir. Elde edilen bulgular, yerel popülasyonların tescilli çeşitlerden ve Hindistan genotiplerinden genetik olarak farklılaştığını ortaya koymuştur. Özellikle Akören genotipi, tüm diğer genotiplerden genetik olarak izole bir yapıya sahip bulunmuştur. Çalışma, yerel popülasyonların genetik çeşitliliğin korunması ve artırılmasında önemli bir rol oynadığını göstermektedir. Hindistan genotiplerinin yerel popülasyonlarla birleştirilmesi, daha dayanıklı ve verimli varyetelerin geliştirilmesine katkı sağlayabilir. Sonuçlar, genetik kaynakların etkin kullanımının sürdürülebilir tarımı destekleyerek tarımsal performansı artırabileceğini ortaya koymaktadır.

Project Number

21401055

References

  • Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., & Sorrells, M.E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36 (1), 181-186. https://doi.org/10.1139/g93-024
  • Andrade, P.B.d., Freitas, B.M., Rocha, E.E.d.M., Lima, J.A.d., & Rufino, L.L. (2014). Floral biology and pollination requirements of sesame (Sesamum indicum L.). Acta Scientiarum. Animal Sciences, 36 (1), 93-99. https://doi.org/10.4025/actascianimsci.v36i1.21838
  • Anggraeni, T., Fadilah, S., Kusnadi, J., & Basuki, S. (2022). The use of ISSR markers for clustering sesame genotypes based on geographical origin. IOP Conference Series: Earth and Environmental Science, 974, 012031.
  • Asekova, S., Kulkarni, K.P., Oh KiWon, O.K., Lee MyungHee, L.M., Oh EunYoung, O.E., Kim JungIn, K.J., Yeo UnSang, Y.U., Pae SukBok, P.S., Ha TaeJoung, H.T., & Kim SungUp, K.S. (2018). Analysis of molecular variance and population structure of sesame (Sesamum indicum L.) genotypes using simple sequence repeat markers. Plant Breeding and Biotechnology, 6, 321-336. https://doi.org/10.9787/PBB.2018.6.4.321
  • Ashfaq, M., Rani, K.J., Padmaja, D., Yadav, P., & Betha, U.K. (2024). Analysis of genetic diversity in sesame (Sesamum indicum L.) germplasm lines based on agro-morphological traits and SSR markers. Electronic Journal of Plant Breeding, 15 (4), 962-971. https://doi.org/10.37992/2024.1504.105
  • Ashri, A. (2006). Sesame (Sesamum indicum L.). Genetic Resources, Chromosome Engineering, and Crop Improvement: Oilseed Crops, 4, 231-289.
  • Bhattacharjee, M., Prakash, S., Roy, S., Soumen, S., Begum, T., & Dasgupta, T. (2020). SSR-based DNA fingerprinting of 18 elite Indian varieties of sesame (Sesamum indicum L.). The Nucleus, 63, 67-73. https://doi.org/10.1007/s13237-019-00290-3
  • Botstein, D., White, R.L., Skolnick, M., & Davis, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32 (3), 314-331. https://www.ncbi.nlm.nih.gov/pubmed/6247908
  • Chesnokov, Y.V., & Artemyeva, A. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Сельскохозяйственная биология, (5 (eng)), 571-578. https://doi.org/10.15389/agrobiology.2015.5.571eng
  • Cornea-Cipcigan, M., Pamfil, D., Sisea, C.R., & Margaoan, R. (2023). Characterization of Cyclamen genotypes using morphological descriptors and DNA molecular markers in a multivariate analysis. Frontiers in Plant Science, 14, 1100099. https://doi.org/10.3389/fpls.2023.1100099
  • Dossa, K., Wei, X., Zhang, Y., Fonceka, D., Yang, W., Diouf, D., Liao, B., Cisse, N., & Zhang, X. (2016). Analysis of genetic diversity and population structure of sesame accessions from Africa and Asia as major centers of its cultivation. Genes (Basel), 7 (4), 14. https://doi.org/10.3390/genes7040014
  • Doyle, J.J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15. https://doi.org/10016746787
  • Elston, R.C., Olson, J.M., & Palmer, L. (2002). Biostatistical genetics and genetic epidemiology (Vol. 1). John Wiley & Sons.
  • Emon, R.M., Sakib, M.N., Khatun, M.K., Malek, M.A., Haque, M.S., & Alam, M.A. (2023). Microsatellite marker assisted molecular and morpho-physiological genetic diversity assessment in 38 genotypes of sesame (Sesamum indicum L.). Journal of Phytology, 15, 43-51. https://doi.org/10.25081/jp.2023.v15.7902
  • Guo, X., & Elston, R.C. (1999). Linkage information content of polymorphic genetic markers. Human Heredity, 49 (2), 112-118. https://doi.org/10.1159/000022855
  • Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles, 44, 223-270.
  • Liang, J., Sun, J., Ye, Y., Yan, X., Yan, T., Rao, Y., Zhou, H., & Le, M. (2021). QTL mapping of PEG-induced drought tolerance at the early seedling stage in sesame using whole genome re-sequencing. PLoS One, 16 (2), e0247681. https://doi.org/10.1371/journal.pone.0247681
  • Liu, K., Goodman, M., Muse, S., Smith, J.S., Buckler, E., & Doebley, J. (2003). Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 165 (4), 2117-2128. https://doi.org/10.1093/genetics/165.4.2117
  • Meena, R., Singh, B., Meena, K., Meena, R., Singh, B., & Gurjar, P. (2018). Performance of front-line demonstrations on sesame (Sesamum indicum L.) in Karauli District of Rajasthan, India. International Journal of Current Microbiology and Applied Sciences, 7 (3), 1507-1511. https://doi.org/10.20546/ijcmas.2018.703.179
  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89 (3), 583-590. https://doi.org/10.1093/genetics/89.3.583
  • Porebski, S., Bailey, L.G., & Baum, B.R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15, 8-15. https://doi.org/10.1007/Bf02772108
  • Powell, W., Machray, G.C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1 (7), 215-222. https://doi.org/1360-1385(96)86898-1
  • Teklu, D.H., Shimelis, H., & Abady, S. (2022). Genetic improvement in sesame (Sesamum indicum L.): Progress and outlook: A review. Agronomy, 12 (9), 2144. https://doi.org/10.3390/agronomy12092144
  • Uncu, A.O., Gultekin, V., Allmer, J., Frary, A., & Doganlar, S. (2015). Genomic simple sequence repeat markers reveal patterns of genetic relatedness and diversity in sesame. Plant Genome, 8 (2), eplantgenome2014 2011 0087. https://doi.org/10.3835/plantgenome2014.11.0087
  • Williams, S.E., & Hoffman, E.A. (2009). Minimizing genetic adaptation in captive breeding programs: A review. Biological Conservation, 142 (11), 2388-2400. https://doi.org/10.1016/j.biocon.2009.05.034
  • Yaseen, G., Ahmad, M., Zafar, M., Akram, A., Sultana, S., Ahmed, S.N., & Kilic, O. (2021). Sesame (Sesamum indicum L.). In green sustainable process for chemical and environmental engineering and science (pp. 253-269). Elsevier. https://doi.org/10.1016/B978-0-12-821886-0.00005-1
  • Yepuri, V., Surapaneni, M., Kola, V.S.R., Vemireddy, L., Jyothi, B., Dineshkumar, V., Anuradha, G., & Siddiq, E. (2013). Assessment of genetic diversity in sesame (Sesamum indicum L.) genotypes, using EST-derived SSR markers. Journal of Crop Science and Biotechnology, 16 (2), 93-103. https://doi.org/10.1007/s12892-012-0116-9
  • Yi, L., Dong, Z., Lei, Y., Zhao, J., Xiong, Y., Yang, J., Xiong, Y., Gou, W., & Ma, X. (2021). Genetic diversity and molecular characterization of worldwide prairie grass (Bromus catharticus Vahl) accessions using SRAP markers. Agronomy, 11 (10), 2054. https://doi.org/10.3390/agronomy11102054
  • Zhang, H., Wei, L., Miao, H., Zhang, T., & Wang, C. (2012). Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics, 13, 316. https://doi.org/10.1186/1471-2164-13-316
There are 29 citations in total.

Details

Primary Language English
Subjects Field Crops and Pasture Production (Other)
Journal Section Araştırma Makalesi
Authors

Münüre Tanur Erkoyuncu 0000-0001-5004-4771

Erdoğan Hakkı 0000-0001-7147-7875

Nur Koç Koyun 0000-0002-3053-6127

Mustafa Yorgancılar 0000-0003-4938-8547

Project Number 21401055
Early Pub Date August 9, 2025
Publication Date August 21, 2025
Submission Date February 23, 2025
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Tanur Erkoyuncu, M., Hakkı, E., Koç Koyun, N., Yorgancılar, M. (2025). Genetic diversity analysis of sesame (Sesamum indicum L.) genotypes in Türkiye using SSR markers. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 30(2), 472-486. https://doi.org/10.37908/mkutbd.1645274