Kaktüs Armut (Opuntia ficus-indica L.) Meyvesinden Stres Tolerant Mayaların Moleküler Tanımlanması ve Depo Karbonhidrat Birikimleri
Year 2022,
, 1001 - 1011, 26.12.2022
Tulay Turgut Genc
,
Melih Günay
,
Merve Sıkık 0000-0003-2552-038x
Abstract
Kaktüs armut bitkisi (Opuntia ficus-indica (L.) Mill.) yetiştiği coğrafya ve iklim koşulları nedeniyle sıcaklığa ve kuraklığa toleransı oldukça yüksek olan bir kaktüs türüdür. Bu kaktüs türünün bozulmaya başlayan kladotları ve meyveleri mayaların ve diğer mikroorganizmaların çoğalabilmesi için uygun alan oluşturmaktadır. Maya hücreleri stres koşullarında stres metaboliti olarak trehaloz ve glikojen biriktirir. Çalışmamızda kaktüs armut meyvesinden stres dirençli maya türlerinin izole edilerek moleküler yöntemlerle tanımlanması ve depo karbonhidrat birikimlerinin belirlenmesi amaçlandı. Termotolerant ve osmotolerant maya suşlarının moleküler tanımlanmasında 26S rDNA-D1/D2 gen bölgesinin dizi analizi kullanıldı. Stres dirençli maya suşlarının trehaloz ve glikojen birikimleri stres koşullarında enzimatik olarak belirlendi. İzole edilen K. marxianus, K. lactis ve P. kudriavzevii maya türlerine ait tüm maya suşlarının termotolerant ve osmotolerant maya suşları olduğu gözlendi. K. marxianus ve K. lactis maya türünde stres metaboliti olarak glikojenin P. kudriavzevii maya türünde ise trehalozun tercih edildiği belirlendi. Diğer izole edilen A. pullulans, H. opuntiae ve P. kluyveri türlerine ait maya suşları arasında stres toleransının ve depo karbonhidratın stresin derecesine ve çeşidine bağlı olarak değiştiği tespit edildi. İzole edilen K. marxianus ve K. lactis maya suşlarının süt ürünleri endüstrisinde, P. kudriavzevii maya suşlarının ise biyoetanol ve fermentasyon endüstrisinde kullanımı için uygun potansiyele sahip oldukları değerlendirildi.
Supporting Institution
Çanakkale Onsekiz Mart Üniversitesi ve Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Project Number
FHD-2020-3237 ve TUBİTAK-2209-A programı
Thanks
Çalışmalar Çanakkale Onsekiz Mart Üniversitesi BAP Komisyonu tarafından FHD-2020-3237 proje numarası ile ve Türkiye Bilimsel ve Teknolojik Araştırma Kurumu tarafından TUBİTAK-2209-A programı ile desteklenmiştir.
References
- [1] Cassano A., Conidi C., Timpone R., D'Avella M., Drioli E. A membrane based process for the clarification and the concentration of the cactus pear juice, Journal of Food Engineering, 80, 914-921, 2007.
- [2] Yılmaz C. Dikenli incir (Opuntia ficus-indica L.) yetiştiriciliği, Tarım Türk, 24: 14-16, 2010.
- [3] Livrea M. A., Tesoriere L. Health benefits and bioactive components of the fruits from Opuntia ficus-indica [L.] Mill., Journal of the Professional Association Cactus Development, 8, 73-90, 2006.
- [4] Mobhammer M. R., Stintzing F. C., Carle R. Cactus pear fruits (Opuntia spp.): A review of processing technologies and current uses, Journal of the Professional Association Cactus Development, 8, 1-25, 2006.
- [5] Tesoriere L., Gentile C., Angileri F., Attanzio A., Tutone M., Allegra M., Livrea M. A. Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix, European Journal of Nutrition, 52, 1077-1087, 2012.
- [6] Panda K. S., Behera K. S., Qaku W. X., Sekar S., Ndinteh T. D., Nanjundaswamy H. M., Ray R. C., Kayitesi E. Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum - ATCC 9338, LWT–Food Science and Technology, 75, 453-459, 2017.
- [7] Coria Cayupan Y. S., Ochoa M. J., Nazareno M. Health-promoting substances and antioxidant properties of Opuntia sp. fruits: Changes in bioactive compound contents during ripening process, Food Chemistry, 126, 514-519, 2011.
- [8] Jimenez-Aguilar D. M., Lopez-Martínez J., Hernandez-Brenes C., Gutierrez-Uribe J., Welti-Chanes J. Dietary fiber, phytochemical composition and antioxidant activity of Mexican commercial varieties of cactus pear, Journal of Food Composition and Analysis, 41, 66-73, 2015.
- [9] Stintzing F. C., Herbach K. M., Mobhammer M. R., Carle R., Yi W., Sellappan S., Akoh C. C., Bunch R., Felker P. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones, Journal of Agricultural and Food Chemistry, 53, 442-451, 2005.
- [10] Lachance M. A., Starmer W. T., Phaff H. J. Identification of yeasts found in decaying cactus tissue, Canadian Journal of Microbiology, 34,1025–1036, 1988.
- [11] Ganter P. F., Benevides de Morais P., Rosa C. A. Yeasts in Cacti and Tropical Fruit. In book: Yeasts in Natural Ecosystems: Diversity, 2017.
- [12] Freitas L. F. D., Batista T. M., Santos A. N. O., Hilário H. O., Moreira R. G., Franco G. R., Morais P. B., Lachance M. A., Rosa C. A. Yeast communities associated with cacti in Brazil and the description of Kluyveromyces starmeri sp. nov. based on phylogenomic analyses, Yeast, 37,625–637, 2020.
- [13] Starmer W. T., Aberdeen V., Lachance M. A. The biogeographic diversity of cactophilic yeasts. In Péter G., Rosa C. (eds) Biodiversity and ecophysiology of yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg, 2006.
- [14] Coşkuner Y., Türker N., Ekiz H. I., Aksay S., Karababa E. Effect of pH and temperature on the thermostability of prickly pear (Opuntia ficus-indica) yellow orange pigments, Food Nahrung, 44(4), 261-263, 2000.
- [15] Türker N., Coskuner Y., Ekiz H. İ., Aksay S., Karababa E. The effects of fermentation on the thermostability of the yellow-orange pigments extracted from cactus pear (Opuntia ficus-indica), European Food Research and Technology, 212, 213–216, 2001.
- [16] Kabas Ö., Ozmerdi A., Akıncı İ. Physical properties of cactus pear (Opuntia ficus india L.) grown wild in Turkey, Journal of Food Engineering, 73, 198-202, 2006.
- [17] Dengiz T. N., Zengin H. Hint İnciri (Opuntia ficus-indica) meyve suyunun kimyasal ve antioksidan özelliklerinin incelenmesi, İstanbul Aydın Üniversitesi Dergisi, 30,125-150, 2016.
- [18] Çakmak M., Bakar B., Ibrahim M. S., Özer D., Karataş F., Saydam S. Effect of freezing and drying methods on some biochemical properties of prickly fig (Opuntia ficus-indica) fruit, Yüzüncü Yıl University Journal of Agricultural Science, 30(3), 535-543, 2020.
- [19] Çağlar A., Akarca G., Tomar O., Ekmekçi E. Some physicochemical and sensory properties of cactus fruit (Opuntia ficus-indica L.) vinegar produced by traditional method, European Journal of Science and Technology, 18, 952-957, 2020.
- [20] François J., Parrou J. L. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiology Reviews, 25, 125-145, 2001.
- [21] François J., Blazquez M. A., Arino J., Gancedo C., Storage carbohydrates in the yeast Saccharomyces cerevisiae. Yeast sugar metabolism. Biochemistry, Genetics, Biotechnology and Applications, Technomic Publishing Company,16, 285- 303, 1997.
- [22] François J., Walther T., Parrou J. L. Genetics and regulation of glycogen and trehalose metabolism in Saccharomyces cerevisiae, Microbial Stress Tolerance for Biofuels, Microbiology Monographs, 22, 29-55, 2012.
- [23] Kane S. M., Roth R. Carbohydrate Metabolism During Ascospore Development in Yeast. Journal of Bacteriology, 118(1), 8–14, 1974
- [24] Argüelles J. C. Physiological roles of trehalose in bacteria and yeasts: A Comparative analysis. Archieves of Microbiology, 174, 217- 224, 2000.
- [25] Shima J, Takagi H. Stress-Tolerance of Baker’s-Yeast (Saccharomyces cerevisiae) Cells: Stress-Protective Molecules and Genes Involved in Stress Tolerance. Biotechnology and Applied Biochemistry, 53(3), 155–164, 2009.
- [26] Fraenkel D., Nielsen J. Trehalose-6-Phosphate Synthase and Stabilization of Yeast Glycolysis. FEMS Yeast Research, 16(1), 1-6, 2016.
- [27] Petitjean M, Teste M. A., Léger-Silvestre I., François J. M., Parrou J. L. A New Function for The Yeast Trehalose-6P Synthase (Tps1) Protein, as Key Pro-Survival Factor During Growth, Chronological Ageing, and Apoptotic Stress. Mechanisms of Ageing and Development, 161(2017), 234-246, 2016.
- [28] Türkel S., Turgut T. Analysis of the effects of hyperosmotic stress on the derepression of invertase activities and the growth of different Baker's yeast strains, Turkish Journal of Biology, 26, 155-161, 2002.
- [29] Kristjuhan A., Lõoke M., Kristjuhan K. Extraction of genomic DNA from yeasts for PCR-based applications, Biotechniques, 50(5), 325–328, 2011.
- [30] Kurtzman C. P, Robnett C. J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie van Leeuwenhoek, 73, 331–371, 1998.
- [31] White T. J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (Eds.) PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, California, USA. p. 315-322, 1990.
- [32] Parrou J. L., François J. A Simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells, Analytical Biochemistry, 248, 186-188, 1997.
- [33] Breuer U., Harms H. Debaryomyces hansenii-an extremophilic yeast with biotechnological potential, Yeast, 23, 415–437, 2006.
- [34] Yamamoto H., Shima T., Yamaguchi M., Mochizuki Y., Hoshida H., Kakuta S., Kondo-Kakuta C, Noda N. N., Inaqaki F., Itoh T., Akada R., Ohsumi Y. The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy, Journal of Biological Chemistry, 115, 6833-6842, 2015.
- [35] Choi D. H., Eun-Hee Park E. H., Kim M. D. Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Science and Biotechnology, 26, 1357–1362, 2017.
- [36] Mejía-Barajas J. A., Montoya-Pérez R., Salgado-Garciglia R., Aguilera-Aguirre L., Cortés-Rojo C., Mejía-Zepeda R., Arellano-Plaza M., Saavedra-Molinaa A. Oxidative stress and antioxidant response in a thermotolerant yeast. Brazilian Journal of Microbiology, 48(2), 326–332, 2017.
- [37] Limtong S., Sringiew C., Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus, Bioresource Technology, 98, 3367–3374, 2007.
- [38] Christensen A. D., Kádár Z., Oleskowicz-Popiel P., Thomsen M. H. Production of bioethanol from organic whey using Kluyveromyces marxianus. Journal of Industrial Microbiology and Biotechnology, 38, 283–289, 2011.
- [39] Arellano-Plaza M., Gschaedler-Mathis A., Noriega-Cisneros R. Respiratory capacity of the Kluyveromyces marxianus yeast isolated from the mezcal process during oxidative stress, World Journal of Microbiology and Biotechnology, 29(7), 1279–1287, 2013.
- [40] Charoensopharat K., Thanonkeo P., Thanonkeo S., Yamada M. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing, Antonie Van Leeuwenhoek, 108,173–190, 2015.
- [41] Choudhary J, Singh S, Nain L. Thermotolerant fermenting yeasts for simultaneous saccharification and fermentation of lignocellulosic biomass, Electronic Journal of Biotechnology, 21, 82–92, 2016.
- [42] Dhaliwal S. S., Oberoi H. S., Sandhu S.K., Nanda D., Kumar D., Uppal S. K. Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii, Bioresource Technology, 102, 5968–5975, 2011.
- [43] Kaewkrajay C., Dethoup T., Limtong S. Ethanol production from cassava using a newly isolated thermotolerant yeast strain, Science Asia, 40, 268–277, 2014.
- [44] Chamnipa N., Thanonkeo S., Klanrit P., Thanonkeo P. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production, Brazilian Journal of Microbiology, 49(2), 378–391, 2018.
- [45] Chi Z., Wang F., Chi Z., Yue L., Liu G., Zhang T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast, Applied Microbiology and Biotechnology, 82, 793–804, 2009.
- [46] Gaur R., Singh R., Gupta M., Gaur M. K. Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan, African Journal of Biotechnology, 9, 7989–7997, 2010.
- [47] Gostinčar C., Grube M., de Hoog G. S., Zalar P., Gunde-Cimerman N. Extremotolerance in fungi: evolution on the edge, FEMS Microbiology and Ecology, 71, 2–11, 2010.
- [48] Gostinčar C., Grube M., Gunde-Cimerman N. Evolution of fungal pathogens in domestic environments? Fungal Biology, 115, 1008–1018, 2011.
- [49] Gunde-Cimerman N., Zalar P., de Hoog S., Plemenitaš A. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts, FEMS Microbiology and Ecology, 32, 235–240, 2000.
- [50] Shiomi N., Yasuda T., Inoue Y., Kusumoto N., Iwasaki S., Katsuda T., Katoh S. Characteristics of neutralization of acids by newly isolated fungal cells, Journal of Bioscience and Bioengineering, 97, 54–58, 2004.
- [51] Kogej T., Ramos J., Plemenitas A., Gunde-Cimerman N. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments, Applied and Environmental Microbiology, 71, 6600–6605, 2005.
- [52] Gostinčar C., Ohm R. A., Kogej T., Sonjak S., Turk M., Zajc J., Zalar P., Grube M., Sun H., Han J., Sharma A., Chiniquy J., Ngan C. Y., Lipzen A., Barry K., Grigoriev I. V., Gunde-Cimerman N. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species, BMC Genomics, 15 (549), 1–28, 2014.
- [53] Luan Y., Zhang B. Q., Duan C. Q., Yan G. L. Effects of different pre-fermentation cold maceration time on aroma compounds of Saccharomyces cerevisiae co-fermentation with Hanseniaspora opuntiae or Pichia kudriavzevii, LWT–Food Science and Technology, 92, 177–186, 2018.
- [54] Martin V., Valera M., Medina K., Boido E., Carrau F. Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines, Fermentation, 4 (76), 1–21, 2018.
- [55] Ricci A., Allende A., Bolton D., Chemaly M., Davies R., Girones R., Koutsoumanis K., Lindqvist R., Nørrung B., Robertson L., Ru G., Sanaa M., Simmons M., Skandamis P., Snary E., Speybroeck N., Ter Kuile B., Threlfall J., Wahlström H., Cocconcelli P. S., Klein G., Maradona M.P., Querol A., Suarez J. E., Sundh I., Vlak J., Correia S., Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 6: suitability of taxonomic units notified to EFSA until March 2017, EFSA Journal, 15, 4664–4841, 2017.
- [56] Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap, Evolution, 39, 783-791, 1985
- [57] Nei M., Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press, New York, 2000.
- [58] Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Molecular Biology and Evolution, 35, 1547-1549, 2018.
- [59] Shima J, Hino A, Yamada C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano Y. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived Form Commercial Baker’s Yeast. Applied and Environmental Microbiology. 65(7), 2841–2846, 1999.
- [60] Sasano Y., Haitani Y., Hashida K., Ohtsu I., Shima J, Takagi H. Simultaneous Accumulation of Proline and Trehalose in Industrial Baker's Yeast Enhances Fermentation Ability in Frozen Dough. Journal of Bioscience and Bioengineering, 13(5), 592-595, 2012.
- [61] Murakami Y, Yokoigawa K, Kawai F, Kawai H. Lipid Composition of Commercial Bakers’ Yeasts Having Different Freeze-Tolerance in Frozen Dough. Bioscience, Biotechnology, and Biochemistry, 60(11), 1874–1878, 1996.
- [62] Ohtake S, Wang Y. J. Trehalose: Current Use and Future Applications. Journal of Pharmaceutical Sciences, 100(6),2020-2053, 2011.
- [63] Dong J., Chen D., Wang G., Zhang C., Du L., Liu S., Zhao Y., Xiao D. Improving Freeze‑Tolerance of Baker’s Yeast Through Seamless Gene Deletion of NTH1 and PUT1. Journal of Industrial Microbiology and Biotechnology, 43, 817–828, 2016.
Molecular Identification of Stress Tolerant Yeasts Isolated from Cactus Pear Fruit (Opuntia ficus-indica L.) and Reserve Carbohydrate Accumulations
Year 2022,
, 1001 - 1011, 26.12.2022
Tulay Turgut Genc
,
Melih Günay
,
Merve Sıkık 0000-0003-2552-038x
Abstract
Cactus pear plant (Opuntia ficus-indica (L.) Mill.) is a type of cactus with a high tolerance to heat and drought due to the geographical and climatic conditions in which it grows. The fruits and decaying cladodes of the cactus pear plant provide a suitable environment for yeasts and other microorganisms to grow. Yeast cells accumulate trehalose and glycogen as a stress metabolite under stress conditions. Our study, it was aimed to isolate stress-tolerant yeast species from cactus pear fruit and identify them with molecular methods, and determine their storage carbohydrate accumulations. Sequence analysis of the 26S rDNA-D1/D2 gene region was used for molecular identification of thermotolerant and osmotolerant yeast strains. Trehalose and glycogen accumulations of stress-tolerant yeast strains were determined enzymatically under stress conditions. All isolated strains belonging to K. marxianus, K. lactis and P. kudriavzevii yeast species were determined as thermotolerant and osmotolerant. It was determined that K. marxianus and K. lactis yeast species preferred glycogen as a stress metabolite while P. kudriavzevii yeast species accumulated trehalose. Stress tolerance and the type and amount of reserve carbohydrate were found to be various among the other isolated yeast strains of A. pullulans, H. opuntiae and P. kluyveri depending on the degree and type of stress. It has been evaluated that the isolated K. marxianus and K. lactis yeast strains have the potential to be used in the dairy industry, while the P. kudriavzevii yeast strains are suitable for use in the bioethanol and fermentation industry.
Project Number
FHD-2020-3237 ve TUBİTAK-2209-A programı
References
- [1] Cassano A., Conidi C., Timpone R., D'Avella M., Drioli E. A membrane based process for the clarification and the concentration of the cactus pear juice, Journal of Food Engineering, 80, 914-921, 2007.
- [2] Yılmaz C. Dikenli incir (Opuntia ficus-indica L.) yetiştiriciliği, Tarım Türk, 24: 14-16, 2010.
- [3] Livrea M. A., Tesoriere L. Health benefits and bioactive components of the fruits from Opuntia ficus-indica [L.] Mill., Journal of the Professional Association Cactus Development, 8, 73-90, 2006.
- [4] Mobhammer M. R., Stintzing F. C., Carle R. Cactus pear fruits (Opuntia spp.): A review of processing technologies and current uses, Journal of the Professional Association Cactus Development, 8, 1-25, 2006.
- [5] Tesoriere L., Gentile C., Angileri F., Attanzio A., Tutone M., Allegra M., Livrea M. A. Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix, European Journal of Nutrition, 52, 1077-1087, 2012.
- [6] Panda K. S., Behera K. S., Qaku W. X., Sekar S., Ndinteh T. D., Nanjundaswamy H. M., Ray R. C., Kayitesi E. Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum - ATCC 9338, LWT–Food Science and Technology, 75, 453-459, 2017.
- [7] Coria Cayupan Y. S., Ochoa M. J., Nazareno M. Health-promoting substances and antioxidant properties of Opuntia sp. fruits: Changes in bioactive compound contents during ripening process, Food Chemistry, 126, 514-519, 2011.
- [8] Jimenez-Aguilar D. M., Lopez-Martínez J., Hernandez-Brenes C., Gutierrez-Uribe J., Welti-Chanes J. Dietary fiber, phytochemical composition and antioxidant activity of Mexican commercial varieties of cactus pear, Journal of Food Composition and Analysis, 41, 66-73, 2015.
- [9] Stintzing F. C., Herbach K. M., Mobhammer M. R., Carle R., Yi W., Sellappan S., Akoh C. C., Bunch R., Felker P. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones, Journal of Agricultural and Food Chemistry, 53, 442-451, 2005.
- [10] Lachance M. A., Starmer W. T., Phaff H. J. Identification of yeasts found in decaying cactus tissue, Canadian Journal of Microbiology, 34,1025–1036, 1988.
- [11] Ganter P. F., Benevides de Morais P., Rosa C. A. Yeasts in Cacti and Tropical Fruit. In book: Yeasts in Natural Ecosystems: Diversity, 2017.
- [12] Freitas L. F. D., Batista T. M., Santos A. N. O., Hilário H. O., Moreira R. G., Franco G. R., Morais P. B., Lachance M. A., Rosa C. A. Yeast communities associated with cacti in Brazil and the description of Kluyveromyces starmeri sp. nov. based on phylogenomic analyses, Yeast, 37,625–637, 2020.
- [13] Starmer W. T., Aberdeen V., Lachance M. A. The biogeographic diversity of cactophilic yeasts. In Péter G., Rosa C. (eds) Biodiversity and ecophysiology of yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg, 2006.
- [14] Coşkuner Y., Türker N., Ekiz H. I., Aksay S., Karababa E. Effect of pH and temperature on the thermostability of prickly pear (Opuntia ficus-indica) yellow orange pigments, Food Nahrung, 44(4), 261-263, 2000.
- [15] Türker N., Coskuner Y., Ekiz H. İ., Aksay S., Karababa E. The effects of fermentation on the thermostability of the yellow-orange pigments extracted from cactus pear (Opuntia ficus-indica), European Food Research and Technology, 212, 213–216, 2001.
- [16] Kabas Ö., Ozmerdi A., Akıncı İ. Physical properties of cactus pear (Opuntia ficus india L.) grown wild in Turkey, Journal of Food Engineering, 73, 198-202, 2006.
- [17] Dengiz T. N., Zengin H. Hint İnciri (Opuntia ficus-indica) meyve suyunun kimyasal ve antioksidan özelliklerinin incelenmesi, İstanbul Aydın Üniversitesi Dergisi, 30,125-150, 2016.
- [18] Çakmak M., Bakar B., Ibrahim M. S., Özer D., Karataş F., Saydam S. Effect of freezing and drying methods on some biochemical properties of prickly fig (Opuntia ficus-indica) fruit, Yüzüncü Yıl University Journal of Agricultural Science, 30(3), 535-543, 2020.
- [19] Çağlar A., Akarca G., Tomar O., Ekmekçi E. Some physicochemical and sensory properties of cactus fruit (Opuntia ficus-indica L.) vinegar produced by traditional method, European Journal of Science and Technology, 18, 952-957, 2020.
- [20] François J., Parrou J. L. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiology Reviews, 25, 125-145, 2001.
- [21] François J., Blazquez M. A., Arino J., Gancedo C., Storage carbohydrates in the yeast Saccharomyces cerevisiae. Yeast sugar metabolism. Biochemistry, Genetics, Biotechnology and Applications, Technomic Publishing Company,16, 285- 303, 1997.
- [22] François J., Walther T., Parrou J. L. Genetics and regulation of glycogen and trehalose metabolism in Saccharomyces cerevisiae, Microbial Stress Tolerance for Biofuels, Microbiology Monographs, 22, 29-55, 2012.
- [23] Kane S. M., Roth R. Carbohydrate Metabolism During Ascospore Development in Yeast. Journal of Bacteriology, 118(1), 8–14, 1974
- [24] Argüelles J. C. Physiological roles of trehalose in bacteria and yeasts: A Comparative analysis. Archieves of Microbiology, 174, 217- 224, 2000.
- [25] Shima J, Takagi H. Stress-Tolerance of Baker’s-Yeast (Saccharomyces cerevisiae) Cells: Stress-Protective Molecules and Genes Involved in Stress Tolerance. Biotechnology and Applied Biochemistry, 53(3), 155–164, 2009.
- [26] Fraenkel D., Nielsen J. Trehalose-6-Phosphate Synthase and Stabilization of Yeast Glycolysis. FEMS Yeast Research, 16(1), 1-6, 2016.
- [27] Petitjean M, Teste M. A., Léger-Silvestre I., François J. M., Parrou J. L. A New Function for The Yeast Trehalose-6P Synthase (Tps1) Protein, as Key Pro-Survival Factor During Growth, Chronological Ageing, and Apoptotic Stress. Mechanisms of Ageing and Development, 161(2017), 234-246, 2016.
- [28] Türkel S., Turgut T. Analysis of the effects of hyperosmotic stress on the derepression of invertase activities and the growth of different Baker's yeast strains, Turkish Journal of Biology, 26, 155-161, 2002.
- [29] Kristjuhan A., Lõoke M., Kristjuhan K. Extraction of genomic DNA from yeasts for PCR-based applications, Biotechniques, 50(5), 325–328, 2011.
- [30] Kurtzman C. P, Robnett C. J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie van Leeuwenhoek, 73, 331–371, 1998.
- [31] White T. J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (Eds.) PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, California, USA. p. 315-322, 1990.
- [32] Parrou J. L., François J. A Simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells, Analytical Biochemistry, 248, 186-188, 1997.
- [33] Breuer U., Harms H. Debaryomyces hansenii-an extremophilic yeast with biotechnological potential, Yeast, 23, 415–437, 2006.
- [34] Yamamoto H., Shima T., Yamaguchi M., Mochizuki Y., Hoshida H., Kakuta S., Kondo-Kakuta C, Noda N. N., Inaqaki F., Itoh T., Akada R., Ohsumi Y. The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy, Journal of Biological Chemistry, 115, 6833-6842, 2015.
- [35] Choi D. H., Eun-Hee Park E. H., Kim M. D. Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Science and Biotechnology, 26, 1357–1362, 2017.
- [36] Mejía-Barajas J. A., Montoya-Pérez R., Salgado-Garciglia R., Aguilera-Aguirre L., Cortés-Rojo C., Mejía-Zepeda R., Arellano-Plaza M., Saavedra-Molinaa A. Oxidative stress and antioxidant response in a thermotolerant yeast. Brazilian Journal of Microbiology, 48(2), 326–332, 2017.
- [37] Limtong S., Sringiew C., Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus, Bioresource Technology, 98, 3367–3374, 2007.
- [38] Christensen A. D., Kádár Z., Oleskowicz-Popiel P., Thomsen M. H. Production of bioethanol from organic whey using Kluyveromyces marxianus. Journal of Industrial Microbiology and Biotechnology, 38, 283–289, 2011.
- [39] Arellano-Plaza M., Gschaedler-Mathis A., Noriega-Cisneros R. Respiratory capacity of the Kluyveromyces marxianus yeast isolated from the mezcal process during oxidative stress, World Journal of Microbiology and Biotechnology, 29(7), 1279–1287, 2013.
- [40] Charoensopharat K., Thanonkeo P., Thanonkeo S., Yamada M. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing, Antonie Van Leeuwenhoek, 108,173–190, 2015.
- [41] Choudhary J, Singh S, Nain L. Thermotolerant fermenting yeasts for simultaneous saccharification and fermentation of lignocellulosic biomass, Electronic Journal of Biotechnology, 21, 82–92, 2016.
- [42] Dhaliwal S. S., Oberoi H. S., Sandhu S.K., Nanda D., Kumar D., Uppal S. K. Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii, Bioresource Technology, 102, 5968–5975, 2011.
- [43] Kaewkrajay C., Dethoup T., Limtong S. Ethanol production from cassava using a newly isolated thermotolerant yeast strain, Science Asia, 40, 268–277, 2014.
- [44] Chamnipa N., Thanonkeo S., Klanrit P., Thanonkeo P. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production, Brazilian Journal of Microbiology, 49(2), 378–391, 2018.
- [45] Chi Z., Wang F., Chi Z., Yue L., Liu G., Zhang T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast, Applied Microbiology and Biotechnology, 82, 793–804, 2009.
- [46] Gaur R., Singh R., Gupta M., Gaur M. K. Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan, African Journal of Biotechnology, 9, 7989–7997, 2010.
- [47] Gostinčar C., Grube M., de Hoog G. S., Zalar P., Gunde-Cimerman N. Extremotolerance in fungi: evolution on the edge, FEMS Microbiology and Ecology, 71, 2–11, 2010.
- [48] Gostinčar C., Grube M., Gunde-Cimerman N. Evolution of fungal pathogens in domestic environments? Fungal Biology, 115, 1008–1018, 2011.
- [49] Gunde-Cimerman N., Zalar P., de Hoog S., Plemenitaš A. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts, FEMS Microbiology and Ecology, 32, 235–240, 2000.
- [50] Shiomi N., Yasuda T., Inoue Y., Kusumoto N., Iwasaki S., Katsuda T., Katoh S. Characteristics of neutralization of acids by newly isolated fungal cells, Journal of Bioscience and Bioengineering, 97, 54–58, 2004.
- [51] Kogej T., Ramos J., Plemenitas A., Gunde-Cimerman N. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments, Applied and Environmental Microbiology, 71, 6600–6605, 2005.
- [52] Gostinčar C., Ohm R. A., Kogej T., Sonjak S., Turk M., Zajc J., Zalar P., Grube M., Sun H., Han J., Sharma A., Chiniquy J., Ngan C. Y., Lipzen A., Barry K., Grigoriev I. V., Gunde-Cimerman N. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species, BMC Genomics, 15 (549), 1–28, 2014.
- [53] Luan Y., Zhang B. Q., Duan C. Q., Yan G. L. Effects of different pre-fermentation cold maceration time on aroma compounds of Saccharomyces cerevisiae co-fermentation with Hanseniaspora opuntiae or Pichia kudriavzevii, LWT–Food Science and Technology, 92, 177–186, 2018.
- [54] Martin V., Valera M., Medina K., Boido E., Carrau F. Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines, Fermentation, 4 (76), 1–21, 2018.
- [55] Ricci A., Allende A., Bolton D., Chemaly M., Davies R., Girones R., Koutsoumanis K., Lindqvist R., Nørrung B., Robertson L., Ru G., Sanaa M., Simmons M., Skandamis P., Snary E., Speybroeck N., Ter Kuile B., Threlfall J., Wahlström H., Cocconcelli P. S., Klein G., Maradona M.P., Querol A., Suarez J. E., Sundh I., Vlak J., Correia S., Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 6: suitability of taxonomic units notified to EFSA until March 2017, EFSA Journal, 15, 4664–4841, 2017.
- [56] Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap, Evolution, 39, 783-791, 1985
- [57] Nei M., Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press, New York, 2000.
- [58] Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Molecular Biology and Evolution, 35, 1547-1549, 2018.
- [59] Shima J, Hino A, Yamada C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano Y. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived Form Commercial Baker’s Yeast. Applied and Environmental Microbiology. 65(7), 2841–2846, 1999.
- [60] Sasano Y., Haitani Y., Hashida K., Ohtsu I., Shima J, Takagi H. Simultaneous Accumulation of Proline and Trehalose in Industrial Baker's Yeast Enhances Fermentation Ability in Frozen Dough. Journal of Bioscience and Bioengineering, 13(5), 592-595, 2012.
- [61] Murakami Y, Yokoigawa K, Kawai F, Kawai H. Lipid Composition of Commercial Bakers’ Yeasts Having Different Freeze-Tolerance in Frozen Dough. Bioscience, Biotechnology, and Biochemistry, 60(11), 1874–1878, 1996.
- [62] Ohtake S, Wang Y. J. Trehalose: Current Use and Future Applications. Journal of Pharmaceutical Sciences, 100(6),2020-2053, 2011.
- [63] Dong J., Chen D., Wang G., Zhang C., Du L., Liu S., Zhao Y., Xiao D. Improving Freeze‑Tolerance of Baker’s Yeast Through Seamless Gene Deletion of NTH1 and PUT1. Journal of Industrial Microbiology and Biotechnology, 43, 817–828, 2016.