Research Article
BibTex RIS Cite

Integrated Analysis of the In Vitro Response of Melissa officinalis subsp. officinalis to Copper Oxide Nanoparticles

Year 2025, Volume: 13 Issue: 1, 179 - 191, 30.06.2025
https://doi.org/10.18586/msufbd.1706381

Abstract

This study explores the in vitro effects of copper oxide nanoparticles (CuO-NPs) on Melissa officinalis L. subsp. officinalis (lemon balm) by evaluating morphological, biochemical, and molecular responses. Seedlings were treated with CuO-NPs at 0.1, 1.0, and 10.0 mg/L to assess growth parameters, secondary metabolite production, antioxidant activity, enzyme inhibition, essential oil composition, and gene expression of PAL, TAT, and RAS. Low CuO-NP concentration (0.1 mg/L) significantly enhanced shoot elongation, while 10.0 mg/L induced strong root proliferation but inhibited shoot growth. Total phenolic (TPC) and flavonoid (TFC) contents peaked at 10.0 mg/L, correlating with increased antioxidant activity in CUPRAC, DPPH, and ABTS assays. HPLC analysis revealed elevated rosmarinic acid and reduced caffeic and p-coumaric acid levels, suggesting pathway redirection. Enzyme inhibition assays showed that 1.0 mg/L yielded the strongest AChE inhibition, while higher doses improved inhibition of MAO, urease, and HIV-1 RT. GC-MS analysis indicated altered essential oil profiles under CuO-NP exposure, including increased geranial and neral levels. qRT-PCR confirmed dose-dependent upregulation of PAL, TAT, and RAS genes, particularly at 10.0 mg/L, supporting enhanced phenylpropanoid biosynthesis. Collectively, CuO-NPs act as abiotic elicitors in a concentration-dependent manner, promoting bioactive compound production and antioxidant potential. These findings highlight the potential of CuO-NPs in improving the phytochemical quality of Melissa officinalis under controlled conditions.

Supporting Institution

TUBITAK

Project Number

121Z818

Thanks

This study was financially supported by TUBITAK under Project No. 121Z818, and the authors gratefully acknowledge this support.

References

  • [1] Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8): 3485-3498.
  • [2] Siddiqi, K. S., Husen, A. (2017). Plant response to engineered metal oxide nanoparticles. Nanoscale Research Letters, 15: 141.
  • [3] Yruela, I. (2009). Copper in plants: Acquisition, transport and interactions. Functional Plant Biology, 32(11): 409-430.
  • [4] Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-Ur-Rehman, M., Irshad, M. K., Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22: 8148-8162.
  • [5] Pelegrino, M. T., Kohatsu, M. Y., Seabra, A. B., Monteiro, L. R., Gomes, D. G., Oliveira, H. C., Rolim, W. R., de Jesus, T. A., Batista, B. L., Lange, C. N. (2020). Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment, 192: 1-14.
  • [6] Feigl, G. (2023). The impact of copper oxide nanoparticles on plant growth: a comprehensive review. Journal of Plant Interactions, 18(1).
  • [7] Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., Dizdaroglu, M., Xing, B., Weston, D. J. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science & Technology, 46(3): 1819-1827.
  • [8] Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L., Adam, V. 2017. Nanoparticles Based on Essential Metals and Their Phytotoxicity, Journal of nanobiotechnology, 15(1): 33.
  • [9] Petersen, M., Simmonds, M. S. J. (2003). Rosmarinic acid. Phytochemistry, 62(2): 121–125.
  • [10] Lamaison, J. L., Petitjean-Freytet, C., Carnat, A. (1991). Medicinal Lamiaceae with antioxidant properties, a potential source of rosmarinic acid. Pharmaceutica Acta Helvetiae, 66(7): 185-188.
  • [11] Kumar, K., Debnath, P., Singh, S., Kumar, N. (2023). An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses, 3(3): 570-585.
  • [12] Pant, B. (2014). Application of Plant Cell and Tissue Culture for the Production of Phytochemicals in Medicinal Plants. In: Adhikari, R., Thapa, S. (eds) Infectious Diseases and Nanomedicine II. Advances in Experimental Medicine and Biology, vol 808. Springer, New Delhi.
  • [13] Bektaş, E., Sökmen, A. (2016). In vitro seed germination, plantlet growth, tuberization, and syntheticseed production of Serapias vomeracea (Burm.f.) Briq. Turkish Journal of Botany, 40: 584-594.
  • [14] Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American journal of enology and viticulture, 16: 144–158.
  • [15] Chang, C., Yang, M., Wen, H., Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3): 178-182.
  • [16] Apak, R., Güçlü, K., Özyürek, M., Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26): 7970-7981.
  • [17] Cuendet, M., Hostettmann, K., Potterat, O. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80(4): 1144-1152.
  • [18] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10): 1231-1237.
  • [19] Ellman, G. L., Courtney, K. D., Andres, V. Jr., Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7: 88–95.
  • [20] Olsen, H. T., Stafford, G. I., van Staden, J., Christensen, S. B., Jägera, A. K. (2008). Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. Journal of ethnopharmacology, 117: 500-502.
  • [21] Van Slyke, D. D. E., Archibald, R. M. (1944). Manometric, titrimetric and colorimetric methods for measurement of urease activity. Journal of biological chemistry, 154: 623-642.
  • [22] Bektaş, E., Şahin, H., Beldüz, A. O., Güler, H. İ. (2022). HIV-1-RT inhibition activity of Satureja spicigera (C.KOCH) BOISS. aqueous extract and docking studies of phenolic compounds identified by RP-HPLC-DAD. Journal of Food Biochemistry, 46(4): e13921.
  • [23] Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., Dubey, N. K. (2015). Silicon nanoparticles alleviate chromium phytotoxicity in Pisum sativum (L.) seedlings”, Plant Physiology Biochemistry, 96: 189-198.
  • [24] Babajani, A., Iranbakhsh, A., Oraghi Ardebili, Z., Eslami, B. (2019). Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research International, 26(24): 24430-24444.
  • [25] Riahi, M. A., Nasırı, B. M., Rezaee, F., Baghizadeh, A. (2018). Rosmarinic Acid Accumulation and Expression of Tyrosine Aminotransferase Gene in Melissa officinalis Seedlings in Response to CuO Nanoparticles. Iranian journal of biology, 31: 106-116.
  • [26] Martínez-Chávez, L. A., Hernández-Ramírez, M. Y., Feregrino-Pérez, A. A., Esquivel Escalante, K. (2024). Cutting-Edge Strategies to Enhance Bioactive Compound Production in Plants: Potential Value of Integration of Elicitation, Metabolic Engineering, and Green Nanotechnology. Agronomy, 14(12): 2822.
  • [27] Gonçalves, S., Mansinhos, I., Rodríguez-Solana, R., Pereira-Caro, G., Moreno-Rojas, J. M., Romano, A. (2021). Impact of Metallic Nanoparticles on In Vitro Culture, Phenolic Profile and Biological Activity of Two Mediterranean Lamiaceae Species: Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales. Molecules, 26(21): 6427.
  • [28] Tripathi, D. K., Shweta, S., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., Prasad, S. M., Dubey, N. K., Chauhan, D. K. (2017). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110: 2-12.
  • [29]Dixon, R. A., Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7): 1085-1097.
  • [30] Gülçin, İ., Scozzafava, A., Supuran, C. T., Koksal, Z., Turkan, F., Çetinkaya, S., Bingöl, Z., Huyut, Z., Alwasel, S. H. (2016). Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6): 1698-702.
  • [31] Gonçalves, S., Romano, A. (2017). Inhibitory Properties of Phenolic Compounds Against Enzymes Linked with Human Diseases. Phenolic Compounds - Biological Activity. InTech. Available at: http://dx.doi.org/10.5772/66844.

Melissa officinalis subsp. officinalis’in Bakır Oksit Nanoparçacıklarına Karşı İn Vitro Yanıtının Bütüncül Analizi

Year 2025, Volume: 13 Issue: 1, 179 - 191, 30.06.2025
https://doi.org/10.18586/msufbd.1706381

Abstract

Bu çalışma, bakır oksit nanoparçacıklarının (CuO-NP) Melissa officinalis L. subsp. officinalis (oğulotu) üzerindeki in vitro etkilerini morfolojik, biyokimyasal ve moleküler yanıtlar açısından değerlendirmektedir. Fideler 0.1, 1.0 ve 10.0 mg/L CuO-NP konsantrasyonlarıyla muamele edilerek büyüme parametreleri, sekonder metabolit üretimi, antioksidan aktivite, enzim inhibisyonu, uçucu yağ bileşimi ve PAL, TAT ve RAS genlerinin ekspresyonu analiz edilmiştir. Düşük CuO-NP konsantrasyonu (0.1 mg/L), sürgün uzamasını anlamlı şekilde artırırken, 10.0 mg/L kök gelişimini kuvvetli şekilde teşvik etmiş, ancak sürgün büyümesini baskılamıştır. Toplam fenolik (TPC) ve flavonoid (TFC) içerikleri 10.0 mg/L’de en yüksek değerlere ulaşmış; bu durum CUPRAC, DPPH ve ABTS testlerinde artan antioksidan aktivite ile ilişkilendirilmiştir. HPLC analizleri, rosmarinik asitte artış, kafeik ve p-kumarik asitlerde ise azalma göstermiş; bu da fenilpropanoid yolunun yön değiştirdiğine işaret etmiştir. Enzim inhibisyon analizlerinde, 1.0 mg/L konsantrasyonu AChE üzerinde en yüksek inhibisyon etkisi gösterirken, daha yüksek dozlar MAO, üreaz ve HIV-1 RT enzimlerinin inhibisyonunu artırmıştır. GC-MS analizleri, CuO-NP uygulaması altında uçucu yağ profillerinin değiştiğini ve özellikle geranial ve neral düzeylerinde artış olduğunu göstermiştir. qRT-PCR analizleri, özellikle 10.0 mg/L’de PAL, TAT ve RAS genlerinin doz bağımlı olarak yukarı regüle olduğunu doğrulamış ve fenilpropanoid biyosentezinin arttığını desteklemiştir. Genel olarak, CuO-NP’ler konsantrasyona bağlı şekilde abiyotik elisitör olarak işlev görmekte, biyolojik aktif bileşik üretimini ve antioksidan kapasiteyi artırmaktadır. Bu bulgular, kontrollü koşullarda Melissa officinalis bitkisinin fitokimyasal kalitesinin iyileştirilmesinde CuO-NP’lerin potansiyelini ortaya koymaktadır

Supporting Institution

TÜBİTAK

Project Number

121Z818

Thanks

Bu çalışma TÜBİTAK tarafından 121Z818 numaralı proje kapsamında maddi olarak desteklenmiştir ve yazarlar bu destekten dolayı minnettardır.

References

  • [1] Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8): 3485-3498.
  • [2] Siddiqi, K. S., Husen, A. (2017). Plant response to engineered metal oxide nanoparticles. Nanoscale Research Letters, 15: 141.
  • [3] Yruela, I. (2009). Copper in plants: Acquisition, transport and interactions. Functional Plant Biology, 32(11): 409-430.
  • [4] Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-Ur-Rehman, M., Irshad, M. K., Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22: 8148-8162.
  • [5] Pelegrino, M. T., Kohatsu, M. Y., Seabra, A. B., Monteiro, L. R., Gomes, D. G., Oliveira, H. C., Rolim, W. R., de Jesus, T. A., Batista, B. L., Lange, C. N. (2020). Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment, 192: 1-14.
  • [6] Feigl, G. (2023). The impact of copper oxide nanoparticles on plant growth: a comprehensive review. Journal of Plant Interactions, 18(1).
  • [7] Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., Dizdaroglu, M., Xing, B., Weston, D. J. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science & Technology, 46(3): 1819-1827.
  • [8] Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L., Adam, V. 2017. Nanoparticles Based on Essential Metals and Their Phytotoxicity, Journal of nanobiotechnology, 15(1): 33.
  • [9] Petersen, M., Simmonds, M. S. J. (2003). Rosmarinic acid. Phytochemistry, 62(2): 121–125.
  • [10] Lamaison, J. L., Petitjean-Freytet, C., Carnat, A. (1991). Medicinal Lamiaceae with antioxidant properties, a potential source of rosmarinic acid. Pharmaceutica Acta Helvetiae, 66(7): 185-188.
  • [11] Kumar, K., Debnath, P., Singh, S., Kumar, N. (2023). An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses, 3(3): 570-585.
  • [12] Pant, B. (2014). Application of Plant Cell and Tissue Culture for the Production of Phytochemicals in Medicinal Plants. In: Adhikari, R., Thapa, S. (eds) Infectious Diseases and Nanomedicine II. Advances in Experimental Medicine and Biology, vol 808. Springer, New Delhi.
  • [13] Bektaş, E., Sökmen, A. (2016). In vitro seed germination, plantlet growth, tuberization, and syntheticseed production of Serapias vomeracea (Burm.f.) Briq. Turkish Journal of Botany, 40: 584-594.
  • [14] Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American journal of enology and viticulture, 16: 144–158.
  • [15] Chang, C., Yang, M., Wen, H., Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3): 178-182.
  • [16] Apak, R., Güçlü, K., Özyürek, M., Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26): 7970-7981.
  • [17] Cuendet, M., Hostettmann, K., Potterat, O. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80(4): 1144-1152.
  • [18] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10): 1231-1237.
  • [19] Ellman, G. L., Courtney, K. D., Andres, V. Jr., Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7: 88–95.
  • [20] Olsen, H. T., Stafford, G. I., van Staden, J., Christensen, S. B., Jägera, A. K. (2008). Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. Journal of ethnopharmacology, 117: 500-502.
  • [21] Van Slyke, D. D. E., Archibald, R. M. (1944). Manometric, titrimetric and colorimetric methods for measurement of urease activity. Journal of biological chemistry, 154: 623-642.
  • [22] Bektaş, E., Şahin, H., Beldüz, A. O., Güler, H. İ. (2022). HIV-1-RT inhibition activity of Satureja spicigera (C.KOCH) BOISS. aqueous extract and docking studies of phenolic compounds identified by RP-HPLC-DAD. Journal of Food Biochemistry, 46(4): e13921.
  • [23] Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., Dubey, N. K. (2015). Silicon nanoparticles alleviate chromium phytotoxicity in Pisum sativum (L.) seedlings”, Plant Physiology Biochemistry, 96: 189-198.
  • [24] Babajani, A., Iranbakhsh, A., Oraghi Ardebili, Z., Eslami, B. (2019). Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research International, 26(24): 24430-24444.
  • [25] Riahi, M. A., Nasırı, B. M., Rezaee, F., Baghizadeh, A. (2018). Rosmarinic Acid Accumulation and Expression of Tyrosine Aminotransferase Gene in Melissa officinalis Seedlings in Response to CuO Nanoparticles. Iranian journal of biology, 31: 106-116.
  • [26] Martínez-Chávez, L. A., Hernández-Ramírez, M. Y., Feregrino-Pérez, A. A., Esquivel Escalante, K. (2024). Cutting-Edge Strategies to Enhance Bioactive Compound Production in Plants: Potential Value of Integration of Elicitation, Metabolic Engineering, and Green Nanotechnology. Agronomy, 14(12): 2822.
  • [27] Gonçalves, S., Mansinhos, I., Rodríguez-Solana, R., Pereira-Caro, G., Moreno-Rojas, J. M., Romano, A. (2021). Impact of Metallic Nanoparticles on In Vitro Culture, Phenolic Profile and Biological Activity of Two Mediterranean Lamiaceae Species: Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales. Molecules, 26(21): 6427.
  • [28] Tripathi, D. K., Shweta, S., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., Prasad, S. M., Dubey, N. K., Chauhan, D. K. (2017). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110: 2-12.
  • [29]Dixon, R. A., Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7): 1085-1097.
  • [30] Gülçin, İ., Scozzafava, A., Supuran, C. T., Koksal, Z., Turkan, F., Çetinkaya, S., Bingöl, Z., Huyut, Z., Alwasel, S. H. (2016). Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6): 1698-702.
  • [31] Gonçalves, S., Romano, A. (2017). Inhibitory Properties of Phenolic Compounds Against Enzymes Linked with Human Diseases. Phenolic Compounds - Biological Activity. InTech. Available at: http://dx.doi.org/10.5772/66844.
There are 31 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Plant Biotechnology, Plant Physiology
Journal Section Research Article
Authors

Ersan Bektaş 0000-0001-9030-6908

Hüseyin Şahin 0000-0002-6018-1494

Halil İbrahim Güler 0000-0002-7261-6790

Kadriye İnan 0000-0002-5909-588X

Kaan Kaltalıoğlu 0000-0002-4995-2657

Nilhan Elif Uzun 0009-0003-9187-0318

Project Number 121Z818
Early Pub Date June 25, 2025
Publication Date June 30, 2025
Submission Date May 26, 2025
Acceptance Date June 20, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Bektaş, E., Şahin, H., Güler, H. İ., … İnan, K. (2025). Integrated Analysis of the In Vitro Response of Melissa officinalis subsp. officinalis to Copper Oxide Nanoparticles. Mus Alparslan University Journal of Science, 13(1), 179-191. https://doi.org/10.18586/msufbd.1706381
AMA Bektaş E, Şahin H, Güler Hİ, İnan K, Kaltalıoğlu K, Uzun NE. Integrated Analysis of the In Vitro Response of Melissa officinalis subsp. officinalis to Copper Oxide Nanoparticles. Mus Alparslan University Journal of Science. June 2025;13(1):179-191. doi:10.18586/msufbd.1706381
Chicago Bektaş, Ersan, Hüseyin Şahin, Halil İbrahim Güler, Kadriye İnan, Kaan Kaltalıoğlu, and Nilhan Elif Uzun. “Integrated Analysis of the In Vitro Response of Melissa Officinalis Subsp. Officinalis to Copper Oxide Nanoparticles”. Mus Alparslan University Journal of Science 13, no. 1 (June 2025): 179-91. https://doi.org/10.18586/msufbd.1706381.
EndNote Bektaş E, Şahin H, Güler Hİ, İnan K, Kaltalıoğlu K, Uzun NE (June 1, 2025) Integrated Analysis of the In Vitro Response of Melissa officinalis subsp. officinalis to Copper Oxide Nanoparticles. Mus Alparslan University Journal of Science 13 1 179–191.
IEEE E. Bektaş, H. Şahin, H. İ. Güler, K. İnan, K. Kaltalıoğlu, and N. E. Uzun, “Integrated Analysis of the In Vitro Response of Melissa officinalis subsp. officinalis to Copper Oxide Nanoparticles”, Mus Alparslan University Journal of Science, vol. 13, no. 1, pp. 179–191, 2025, doi: 10.18586/msufbd.1706381.
ISNAD Bektaş, Ersan et al. “Integrated Analysis of the In Vitro Response of Melissa Officinalis Subsp. Officinalis to Copper Oxide Nanoparticles”. Mus Alparslan University Journal of Science 13/1 (June2025), 179-191. https://doi.org/10.18586/msufbd.1706381.
JAMA Bektaş E, Şahin H, Güler Hİ, İnan K, Kaltalıoğlu K, Uzun NE. Integrated Analysis of the In Vitro Response of Melissa officinalis subsp. officinalis to Copper Oxide Nanoparticles. Mus Alparslan University Journal of Science. 2025;13:179–191.
MLA Bektaş, Ersan et al. “Integrated Analysis of the In Vitro Response of Melissa Officinalis Subsp. Officinalis to Copper Oxide Nanoparticles”. Mus Alparslan University Journal of Science, vol. 13, no. 1, 2025, pp. 179-91, doi:10.18586/msufbd.1706381.
Vancouver Bektaş E, Şahin H, Güler Hİ, İnan K, Kaltalıoğlu K, Uzun NE. Integrated Analysis of the In Vitro Response of Melissa officinalis subsp. officinalis to Copper Oxide Nanoparticles. Mus Alparslan University Journal of Science. 2025;13(1):179-91.