Conference Paper
BibTex RIS Cite

Quantum chemical characterization of 2-(2-hydroxy-5-methoxy-3-nitrobenzylidene)-N-methylhydrazine-1-carbothioamide molecule

Year 2019, Volume: 7 Issue: 1, 611 - 620, 30.06.2019
https://doi.org/10.18586/msufbd.524832

Abstract

In this study, the geometric structure of 2-(2-hydroxy-5-methoxy-3-nitrobenzylidene)-N-methylhydrazine-1-carbothioamide
(SL)
molecule was
optimized using Gaussian 09W software in the ground state.
The
results of the optimized molecular structure were presented. It was compared to
the X-ray diffraction data. The theoretical h
armonic
vibrational wavenumbers
of SL molecule were calculated and its values were compared with experimental values. The
experimentally and the calculated values were found to be in good agreement.
SL molecule was characterized by UV-visible spectral studies for the
optical transmission. Also
, 1H and 13C NMR chemical shifts values, nonlinear
optical analysis, the frontier molecular orbital energies, molecular surfaces,
Mulliken charges and atomic polar tensor based charges were investigated. All
theoretical calculations were calculated by
using
LanL2DZ basis set B3LYP and
HSEH1PBE density functional theory method.




References

  • [1] Arafath Md. A., Adam F., Razali M. R., Hassan L. E. A., Ahamed M. B. K., Majid A. M. S. A. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde, Journal of Molecular Structure 1130, 791-798, 2017.
  • [2] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T.,. Montgomery, J.A, Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J.E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J. B., Ortiz, J.V., Cioslowski, J. Ve Fox D.J., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford Ct., 2009.
  • [3] Lee, C., Yang, W. Parr R.G. Development Of The Colle-Salvetti Correlation-Energy Formula İnto A Functional Of The Electron Density. Phys. Rev. B, 37, 785, 1988.
  • [4] Becke, A. D. Density‐Functional Thermochemistry. Iıı. The Role Of Exact Exchange. J. Chem. Phys., 98, 5648, 1993.
  • [5] Heyd, J. Scuseria G. Efficient Hybrid Density Functional Calculations İn Solids: Assessment Of The Heyd-Scuseria-Ernzerhof Screened Coulomb Hybrid Functional. J. Chem. Phys., 121, 1187, 2004.
  • [6] Heyd J. And Scuseria G.E. Assessment And Validation of A Screened Coulomb Hybrid Density Functional. J. Chem. Phys., 120, 7274, 2004.
  • [7] Heyd J., Peralta J. E., Scuseria G. E., And Martin R. L. Energy Band Gaps And Lattice Parameters Evaluated With The Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. J. Chem. Phys., 123, 174101, 2005.
  • [8] Heyd J., Scuseria G. E., Ernzerhof M. Hybrid Functionals Based On A Screened Coulomb Potential. J. Chem. Phys., 124, 219906, 2006.
  • [9] P.J. Hay, W.R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82, 270-283, 1985.
  • [10] Wadt W.R., Hay P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82, 284-298, 1985.
  • [11] Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82 299-310, 1985.
  • [12] Pir H., Günay N., Avcı D. Quantum chemical computational studies on bisthiourea zinc chloride, Indian J. Phys., 86, 1049, 2012.
  • [13] Kariper S. E. Alkin Birimli Piridil Ligantları İçeren Bazı Dinükleer Metal Karbonillerin Kuantum Kimyasal Hesaplama Yöntemleriyle Yapısal, Spektroskopik Ve Optik Özelliklerinin İncelenmesi, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, p. 103.
  • [14] Maroulis, G. Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules, J. Chem. Phys., 113, 5, 2000.
  • [15] Pearson, R. Absolute electronegativity and hardness: applications to organic chemistry, J. Org. Chem., 54, 1423-1430, 1989.
  • [16] Cramer, J.C. Essentials of Computational Chemistry, Theory And Models, John Wiley And Sons, Usa, 596, 2002.

2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu

Year 2019, Volume: 7 Issue: 1, 611 - 620, 30.06.2019
https://doi.org/10.18586/msufbd.524832

Abstract

Bu çalışmada, 2-(2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid
(SL) molekülünün geometrik yapısı taban durumunda
Gaussian 09W programı
kullanılarak optimize edilmiştir. Optimize edilen moleküler yapının sonuçları
sunuldu. X-ışını kırınımı sonuçları ile mukayese edildi.
SL molekülünün
teorik
harmonik titreşimsel dalga boyları hesaplandı ve deneysel değerlerle
karşılaştırıldı. Deneysel değerler ve hesaplanan değerler birbiri ile uyum
içerisinde bulunmuştur.
SL molekülü, optiksel geçişler için UV-görünür spektral
çalışmalar ile karakterize edilmiştir. Ayrıca, 1H ve 13C
NMR kimyasal kayma değerleri, doğrusal olmayan optik analizi, sınır moleküler
yörünge enerjileri, moleküler yüzeyler, Mulliken yükü ve atomik polar tensör
bazlı yükler incelenmiştir. Tüm teorik hesaplamalar LanL2DZ temel seti ile
B3LYP ve HSEH1PBE yoğunluk fonksiyonel teorisi (DFT) yöntemi kullanılarak
hesaplanmıştır.


References

  • [1] Arafath Md. A., Adam F., Razali M. R., Hassan L. E. A., Ahamed M. B. K., Majid A. M. S. A. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde, Journal of Molecular Structure 1130, 791-798, 2017.
  • [2] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T.,. Montgomery, J.A, Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J.E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J. B., Ortiz, J.V., Cioslowski, J. Ve Fox D.J., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford Ct., 2009.
  • [3] Lee, C., Yang, W. Parr R.G. Development Of The Colle-Salvetti Correlation-Energy Formula İnto A Functional Of The Electron Density. Phys. Rev. B, 37, 785, 1988.
  • [4] Becke, A. D. Density‐Functional Thermochemistry. Iıı. The Role Of Exact Exchange. J. Chem. Phys., 98, 5648, 1993.
  • [5] Heyd, J. Scuseria G. Efficient Hybrid Density Functional Calculations İn Solids: Assessment Of The Heyd-Scuseria-Ernzerhof Screened Coulomb Hybrid Functional. J. Chem. Phys., 121, 1187, 2004.
  • [6] Heyd J. And Scuseria G.E. Assessment And Validation of A Screened Coulomb Hybrid Density Functional. J. Chem. Phys., 120, 7274, 2004.
  • [7] Heyd J., Peralta J. E., Scuseria G. E., And Martin R. L. Energy Band Gaps And Lattice Parameters Evaluated With The Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. J. Chem. Phys., 123, 174101, 2005.
  • [8] Heyd J., Scuseria G. E., Ernzerhof M. Hybrid Functionals Based On A Screened Coulomb Potential. J. Chem. Phys., 124, 219906, 2006.
  • [9] P.J. Hay, W.R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82, 270-283, 1985.
  • [10] Wadt W.R., Hay P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82, 284-298, 1985.
  • [11] Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82 299-310, 1985.
  • [12] Pir H., Günay N., Avcı D. Quantum chemical computational studies on bisthiourea zinc chloride, Indian J. Phys., 86, 1049, 2012.
  • [13] Kariper S. E. Alkin Birimli Piridil Ligantları İçeren Bazı Dinükleer Metal Karbonillerin Kuantum Kimyasal Hesaplama Yöntemleriyle Yapısal, Spektroskopik Ve Optik Özelliklerinin İncelenmesi, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, p. 103.
  • [14] Maroulis, G. Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules, J. Chem. Phys., 113, 5, 2000.
  • [15] Pearson, R. Absolute electronegativity and hardness: applications to organic chemistry, J. Org. Chem., 54, 1423-1430, 1989.
  • [16] Cramer, J.C. Essentials of Computational Chemistry, Theory And Models, John Wiley And Sons, Usa, 596, 2002.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hacer Gümüş 0000-0002-6486-0515

Publication Date June 30, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Gümüş, H. (2019). 2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu. Mus Alparslan University Journal of Science, 7(1), 611-620. https://doi.org/10.18586/msufbd.524832
AMA Gümüş H. 2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu. MAUN Fen Bil. Dergi. June 2019;7(1):611-620. doi:10.18586/msufbd.524832
Chicago Gümüş, Hacer. “2- (2-Hidroksi-5-Metoksi-3-Nitrobenziliden)-N-Metilhidrazin-1-Karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu”. Mus Alparslan University Journal of Science 7, no. 1 (June 2019): 611-20. https://doi.org/10.18586/msufbd.524832.
EndNote Gümüş H (June 1, 2019) 2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu. Mus Alparslan University Journal of Science 7 1 611–620.
IEEE H. Gümüş, “2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu”, MAUN Fen Bil. Dergi., vol. 7, no. 1, pp. 611–620, 2019, doi: 10.18586/msufbd.524832.
ISNAD Gümüş, Hacer. “2- (2-Hidroksi-5-Metoksi-3-Nitrobenziliden)-N-Metilhidrazin-1-Karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu”. Mus Alparslan University Journal of Science 7/1 (June 2019), 611-620. https://doi.org/10.18586/msufbd.524832.
JAMA Gümüş H. 2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu. MAUN Fen Bil. Dergi. 2019;7:611–620.
MLA Gümüş, Hacer. “2- (2-Hidroksi-5-Metoksi-3-Nitrobenziliden)-N-Metilhidrazin-1-Karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu”. Mus Alparslan University Journal of Science, vol. 7, no. 1, 2019, pp. 611-20, doi:10.18586/msufbd.524832.
Vancouver Gümüş H. 2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu. MAUN Fen Bil. Dergi. 2019;7(1):611-20.