Araştırma Makalesi
BibTex RIS Kaynak Göster

Performance of a Valveless Free Piston Linear Expander

Yıl 2025, Cilt: 66 Sayı: 720, 424 - 441, 30.09.2025

Öz

The objective of this work was to achieve long-term steady state operation of a Valveless Free-Piston Linear Expander (FPLE). An experimental test bench was developed to measure the inlet and outlet temperatures, inlet and outlet pressures, flow rate, and voltage output. The trends of several output parameters such as frequency, average root mean square (RMS) voltage, volumetric efficiency, electrical-mechanical conversion efficiency, isentropic efficiency, irreversibility, actual expander work, and electrical power were presented. This first iteration FPLE achieved a maximum expander frequency of 44 Hz and a maximum isentropic efficiency of 21.5%.

Kaynakça

  • Aliahmadi M., Moosavi A., Sadrhosseini H. (2021). Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery, Energy Reports, 7, 300-313. Doi: https://doi.org/10.1016/j.egyr.2020.12.035
  • Braimakis K. (2024). Mapping the waste heat recovery potential of CO2 intercooling compression via ORC. International Journal of Refrigeration, 159, 309-332. Doi: https://doi.org/10.1016/j.ijrefrig.2024.01.008
  • Bonar H. (2002). U.S. Patent No. 6,484,498, Washington, DC: U.S. Patent and Trademark Office.
  • Fatigati F., Bartolomeo M.D., Cipollone R. (2024). Model-based optimisation of solar-assisted ORC-based power unit for domestic micro-cogeneration, Energy, 308, 132785. Doi: https://doi.org/10.1016/j.energy.2024.132785
  • Glavatskaya Y., Podevin P., Lemort V., Shonda O., Descombes G. (2012). Reciprocating expander for an exhaust heat recovery Rankine Cycle for a passenger car application, Energies, 5(12), 1751-1765. Doi: https://doi.org/10.3390/en5061751
  • Harada K.J. (2010). Development of a small scale scroll expander (Yüksek Lisans Tezi). Oregon State University, ABD. Erişim adresi: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/dj52w838c
  • Hu J., Li M., Zhao L., Xia B., Ma Y. (2015). Improvement and experimental research of CO2 two-rolling piston expander, Energy, 93, 2199-2207. Doi: https://doi.org/10.1016/j.energy.2015.10.097
  • Imran M., Usman M., Park B. S., Lee D.H. (2016). Volumetric expanders for low grade heat and waste heat recovery applications, Renewable and Sustainable Energy Reviews, 57, 1090-1109. Doi: https://doi.org/10.1016/j.rser.2015.12.139
  • International Energy Agency (2013). World Energy Outlook 2013, Paris, 708. Erişim adresi: https://iea.blob.core.windows.net/assets/a22dedb8-c2c3-448c-b104-051236618b38/WEO2013.pdf
  • Ismael M.A., Aziz A.R.A., Zainal E.Z., Mohammed S.E., Ayandotun W.B., Baharom M.B., Sallehudin M.S., Syakirin M., Anwerudin A.R.T., Masri M.M. (2021). Investigation on free-piston motion and power generation of a dual-piston air-driven expander linear generator, Energy Reports, 7, 2388-2397. Doi: https://doi.org/10.1016/j.egyr.2021.04.035
  • Li X, Han S., Liu Z., He C., Zhang B., Chen Q. (2023). Design optimization and analysis of a multi-temperature partition and multi-configuration integrated organic Rankine cycle for low temperature heat recovery. Energy Conversion and Management, 293 (1), 117504. Doi: https://doi.org/10.1016/j.enconman.2023.117504
  • Li G., Zhang H., Yang F., Song S., Chang Y., Yu F., Wang J., Yao, B. (2016). Preliminary development of a free piston expander–linear generator for small-scale Organic Rankine Cycle (ORC) waste heat recovery system, Energies, 9(4), 300. Doi: https://doi.org/10.3390/en9040300
  • Mathias J. A., Johnston J.R., Cao J., Priedeman D.K., Christensen R.N. (2009). Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of an Organic Rankine Cycle, Journal of Energy Resources Technology, 131(1), 012201-1-012201-9. Doi: https://doi.org/10.1115/1.3066345
  • Pambudi N.A., Wibowo S., Ranto, Saw L.H. (2021). Experimental investigation of Organic Rankine Cycle (ORC) for low temperature geothermal fluid: Effect of pump rotation and R-134 working fluid in scroll-expander, Energy Engineering, 118(5), 1565-1576. Doi: https://doi.org/10.32604/EE.2021.016642
  • Peng B., Tong L., Guo C., Huo W. (2021). Experimental research and performance analysis of a free piston expander-linear generator coupled with a driving motor. Energy Reports, 7, 1349-1359. Doi: https://doi.org/10.1016/j.egyr.2021.02.066
  • Peng B., Tong L., Yan D., Huo W. (2022). Experimental research and artificial neural network prediction of free piston expander-linear generator, Energy Reports, 8, 1966-1978. Doi: https://doi.org/10.1016/j.egyr.2022.01.021
  • Permana D.I., Fagioli F., Lucia M.D., Rusirawan D., Farkas I. (2024). Energy, exergy, environmental and economy (4E) analysis of the existing of biomass-ORC plant with capacity 150 kWe: A case study, Energy Conversion and Management: X, 23, 100646. Doi: https://doi.org/10.1016/j.ecmx.2024.100646
  • Preetham B., Weiss, L. (2016). Investigations of a new free piston expander engine cycle, Energy, 106, 535-545. Doi: https://doi.org/10.1016/j.energy.2016.03.082
  • Smith I. K., Stosic N., Aldis C. A., Kovacevic A. (2000). Twin screw two-phase expanders in large chiller units, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~sj376/smith99a.htm
  • Smith I.K., Stosic N., Kovacevic A. (1999). Power recovery from low cost two-phase expanders, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~ra601/exp.pdf
  • Smith I.K., Stosic N., Kovacevic A. (2005). Screw expanders increase output and decrease the cost of geothermal binary power plant systems, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~ra601/grc2005.pdf
  • Stainchaouer A., Schifflechner C., Wieland C., Sakalis G., Spliethoff H. (2024). Evaluating long-term operational data of a very large crude carrier: Assessing the diesel engines waste heat potential for integrating ORC systems, Applied Thermal Engineering, 255, 123974. Doi: https://doi.org/10.1016/j.applthermaleng.2024.123974
  • Tian Y., Zhang H., Li G., Hou X., Yu F., Yang F., Yang Y., Liu Y. (2017). Experimental study on free piston linear generator (FPLG) used for waste heat recovery of vehicle engine, Applied Thermal Engineering, 127, 184-193. Doi: https://doi.org/10.1016/j.applthermaleng.2017.08.031
  • Wang Y., Chen L., Jia B., Roskilly A.P. (2017). Experimental study of the operation characteristics of an air-driven free-piston linear expander, Applied Energy, 195, 93-99. Doi: https://doi.org/10.1016/j.apenergy.2017.03.032
  • Wang T., Zhou T., Feng Y., Zhang M., Zhu S., Yang H. (2024). Poly-generation system with waste heat of low-temperature flue gas in power plants based on organic Rankine cycle, Applied Thermal Engineering, 242, 122513. Doi: https://doi.org/10.1016/j.applthermaleng.2024.122513
  • Wu Z., Zhang H., Liu Z., Hou X., Li J., Yang F., Zhang J. (2021). Experimental study on the performance of single-piston free-piston expander-linear generator, Energy, 221, 119724. Doi: https://doi.org/10.1016/j.energy.2020.119724
  • Xu X., Zhang L., Zhang H., Ma J., Sambatmaryde K. (2024). Performance analysis of a novel small-scale integrated solar-ORC system for power and heating, Solar Energy, 274, 112605. Doi: https://doi.org/10.1016/j.solener.2024.112605
  • Yagoub W., Doherty P., Riffat S. (2006). Solar energy-gas driven micro-CHP system for an office building, Applied Thermal Engineering, 26(14-15), 1604-1610. Doi: https://doi.org/10.1016/j.applthermaleng.2005.11.021
  • Yan L., Liu J., Ying G., Zhang N. (2023). Simulation analysis of flue gas waste heat utilization retrofit based on ORC system, Energy Engineering, 120 (8), 1919-1938. Doi: https://doi.org/10.32604/ee.2023.027546
  • Yang B., Peng X., He Z., Guo B., Xing Z. (2009). Experimental investigation on the internal working process of a CO2 rotary vane expander, Applied Thermal Engineering, 29(11-12), 2289-2296. Doi: https://doi.org/10.1016/j.applthermaleng.2008.11.023
  • Zhang, B., Peng X., He Z., Xing Z., Shu P. (2017). Development of a double acting free piston expander for power recovery in transcritical CO2 cycle, Applied Thermal Engineering, 27(8-9), 1629-1636. Doi: https://doi.org/10.1016/j.applthermaleng.2006.05.034

Serbest Piston Lineer Genişleticinin Performansı

Yıl 2025, Cilt: 66 Sayı: 720, 424 - 441, 30.09.2025

Öz

Bu çalışmanın amacı, bir Vanasız Serbest Piston Lineer Genleştirici’nin (SPLG) uzun süreli sürekli rejim çalışmasını elde etmektir. Giriş ve çıkış sıcaklıklarını, giriş ve çıkış basınçlarını, debiyi ve voltaj çıktısını ölçmek için bir deneysel test düzeneği kuruldu. Frekans, voltaj ortalama karekök değeri, hacimsel verim, elektrik-mekanik dönüşüm verimi, izantropik verim, tersinmezlik, gerçek genleştirici işi ve elektrik gücü gibi birçok çıktı parametrelerinin eğilimleri sunuldu. SPLG’nin bu ilk çalışmasında, 44 Hz maksimum genleştirici frekansı ve %21,5 maksimum izantropik verim elde edildi.

Teşekkür

Bu çalışma University of North Florida Mühendislik Fakültesi ve Hank Bonar tarafından desteklenmiştir. Ek olarak, Matt Hawn, Miranda Johanning, Kyle Parker, ve Blair Clarkson ilk prototipin imalatında yardım etmiştir.

Kaynakça

  • Aliahmadi M., Moosavi A., Sadrhosseini H. (2021). Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery, Energy Reports, 7, 300-313. Doi: https://doi.org/10.1016/j.egyr.2020.12.035
  • Braimakis K. (2024). Mapping the waste heat recovery potential of CO2 intercooling compression via ORC. International Journal of Refrigeration, 159, 309-332. Doi: https://doi.org/10.1016/j.ijrefrig.2024.01.008
  • Bonar H. (2002). U.S. Patent No. 6,484,498, Washington, DC: U.S. Patent and Trademark Office.
  • Fatigati F., Bartolomeo M.D., Cipollone R. (2024). Model-based optimisation of solar-assisted ORC-based power unit for domestic micro-cogeneration, Energy, 308, 132785. Doi: https://doi.org/10.1016/j.energy.2024.132785
  • Glavatskaya Y., Podevin P., Lemort V., Shonda O., Descombes G. (2012). Reciprocating expander for an exhaust heat recovery Rankine Cycle for a passenger car application, Energies, 5(12), 1751-1765. Doi: https://doi.org/10.3390/en5061751
  • Harada K.J. (2010). Development of a small scale scroll expander (Yüksek Lisans Tezi). Oregon State University, ABD. Erişim adresi: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/dj52w838c
  • Hu J., Li M., Zhao L., Xia B., Ma Y. (2015). Improvement and experimental research of CO2 two-rolling piston expander, Energy, 93, 2199-2207. Doi: https://doi.org/10.1016/j.energy.2015.10.097
  • Imran M., Usman M., Park B. S., Lee D.H. (2016). Volumetric expanders for low grade heat and waste heat recovery applications, Renewable and Sustainable Energy Reviews, 57, 1090-1109. Doi: https://doi.org/10.1016/j.rser.2015.12.139
  • International Energy Agency (2013). World Energy Outlook 2013, Paris, 708. Erişim adresi: https://iea.blob.core.windows.net/assets/a22dedb8-c2c3-448c-b104-051236618b38/WEO2013.pdf
  • Ismael M.A., Aziz A.R.A., Zainal E.Z., Mohammed S.E., Ayandotun W.B., Baharom M.B., Sallehudin M.S., Syakirin M., Anwerudin A.R.T., Masri M.M. (2021). Investigation on free-piston motion and power generation of a dual-piston air-driven expander linear generator, Energy Reports, 7, 2388-2397. Doi: https://doi.org/10.1016/j.egyr.2021.04.035
  • Li X, Han S., Liu Z., He C., Zhang B., Chen Q. (2023). Design optimization and analysis of a multi-temperature partition and multi-configuration integrated organic Rankine cycle for low temperature heat recovery. Energy Conversion and Management, 293 (1), 117504. Doi: https://doi.org/10.1016/j.enconman.2023.117504
  • Li G., Zhang H., Yang F., Song S., Chang Y., Yu F., Wang J., Yao, B. (2016). Preliminary development of a free piston expander–linear generator for small-scale Organic Rankine Cycle (ORC) waste heat recovery system, Energies, 9(4), 300. Doi: https://doi.org/10.3390/en9040300
  • Mathias J. A., Johnston J.R., Cao J., Priedeman D.K., Christensen R.N. (2009). Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of an Organic Rankine Cycle, Journal of Energy Resources Technology, 131(1), 012201-1-012201-9. Doi: https://doi.org/10.1115/1.3066345
  • Pambudi N.A., Wibowo S., Ranto, Saw L.H. (2021). Experimental investigation of Organic Rankine Cycle (ORC) for low temperature geothermal fluid: Effect of pump rotation and R-134 working fluid in scroll-expander, Energy Engineering, 118(5), 1565-1576. Doi: https://doi.org/10.32604/EE.2021.016642
  • Peng B., Tong L., Guo C., Huo W. (2021). Experimental research and performance analysis of a free piston expander-linear generator coupled with a driving motor. Energy Reports, 7, 1349-1359. Doi: https://doi.org/10.1016/j.egyr.2021.02.066
  • Peng B., Tong L., Yan D., Huo W. (2022). Experimental research and artificial neural network prediction of free piston expander-linear generator, Energy Reports, 8, 1966-1978. Doi: https://doi.org/10.1016/j.egyr.2022.01.021
  • Permana D.I., Fagioli F., Lucia M.D., Rusirawan D., Farkas I. (2024). Energy, exergy, environmental and economy (4E) analysis of the existing of biomass-ORC plant with capacity 150 kWe: A case study, Energy Conversion and Management: X, 23, 100646. Doi: https://doi.org/10.1016/j.ecmx.2024.100646
  • Preetham B., Weiss, L. (2016). Investigations of a new free piston expander engine cycle, Energy, 106, 535-545. Doi: https://doi.org/10.1016/j.energy.2016.03.082
  • Smith I. K., Stosic N., Aldis C. A., Kovacevic A. (2000). Twin screw two-phase expanders in large chiller units, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~sj376/smith99a.htm
  • Smith I.K., Stosic N., Kovacevic A. (1999). Power recovery from low cost two-phase expanders, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~ra601/exp.pdf
  • Smith I.K., Stosic N., Kovacevic A. (2005). Screw expanders increase output and decrease the cost of geothermal binary power plant systems, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~ra601/grc2005.pdf
  • Stainchaouer A., Schifflechner C., Wieland C., Sakalis G., Spliethoff H. (2024). Evaluating long-term operational data of a very large crude carrier: Assessing the diesel engines waste heat potential for integrating ORC systems, Applied Thermal Engineering, 255, 123974. Doi: https://doi.org/10.1016/j.applthermaleng.2024.123974
  • Tian Y., Zhang H., Li G., Hou X., Yu F., Yang F., Yang Y., Liu Y. (2017). Experimental study on free piston linear generator (FPLG) used for waste heat recovery of vehicle engine, Applied Thermal Engineering, 127, 184-193. Doi: https://doi.org/10.1016/j.applthermaleng.2017.08.031
  • Wang Y., Chen L., Jia B., Roskilly A.P. (2017). Experimental study of the operation characteristics of an air-driven free-piston linear expander, Applied Energy, 195, 93-99. Doi: https://doi.org/10.1016/j.apenergy.2017.03.032
  • Wang T., Zhou T., Feng Y., Zhang M., Zhu S., Yang H. (2024). Poly-generation system with waste heat of low-temperature flue gas in power plants based on organic Rankine cycle, Applied Thermal Engineering, 242, 122513. Doi: https://doi.org/10.1016/j.applthermaleng.2024.122513
  • Wu Z., Zhang H., Liu Z., Hou X., Li J., Yang F., Zhang J. (2021). Experimental study on the performance of single-piston free-piston expander-linear generator, Energy, 221, 119724. Doi: https://doi.org/10.1016/j.energy.2020.119724
  • Xu X., Zhang L., Zhang H., Ma J., Sambatmaryde K. (2024). Performance analysis of a novel small-scale integrated solar-ORC system for power and heating, Solar Energy, 274, 112605. Doi: https://doi.org/10.1016/j.solener.2024.112605
  • Yagoub W., Doherty P., Riffat S. (2006). Solar energy-gas driven micro-CHP system for an office building, Applied Thermal Engineering, 26(14-15), 1604-1610. Doi: https://doi.org/10.1016/j.applthermaleng.2005.11.021
  • Yan L., Liu J., Ying G., Zhang N. (2023). Simulation analysis of flue gas waste heat utilization retrofit based on ORC system, Energy Engineering, 120 (8), 1919-1938. Doi: https://doi.org/10.32604/ee.2023.027546
  • Yang B., Peng X., He Z., Guo B., Xing Z. (2009). Experimental investigation on the internal working process of a CO2 rotary vane expander, Applied Thermal Engineering, 29(11-12), 2289-2296. Doi: https://doi.org/10.1016/j.applthermaleng.2008.11.023
  • Zhang, B., Peng X., He Z., Xing Z., Shu P. (2017). Development of a double acting free piston expander for power recovery in transcritical CO2 cycle, Applied Thermal Engineering, 27(8-9), 1629-1636. Doi: https://doi.org/10.1016/j.applthermaleng.2006.05.034
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Akışkan Mekaniği ve Termal Mühendislik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Furkan Kodakoglu 0000-0003-1462-9224

John Nuszkowski 0000-0003-1198-1038

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 27 Ocak 2025
Kabul Tarihi 24 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 66 Sayı: 720

Kaynak Göster

APA Kodakoglu, F., & Nuszkowski, J. (2025). Serbest Piston Lineer Genişleticinin Performansı. Mühendis ve Makina, 66(720), 424-441.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520