Review
BibTex RIS Cite

Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar ve Koruyucu Antioksidan Sistemler

Year 2020, , 170 - 179, 29.12.2020
https://doi.org/10.47572/muskutd.827917

Abstract

Eritrositler, kanda sayıca en fazla bulunan ve asıl görevi solunum gazlarını taşımak olan özelleşmiş hücrelerdir. Reaktif oksijen türleri, lipitlerin, nükleik asitlerin, proteinlerin, şekerlerin veya sterollerin oksidasyonuna neden olarak eritrositlerin veya öncüllerinin yapı ve işlevini bozabilir. Özellikle hücre zarlarının oksidasyonu eritrositlerde kırılganlığın artmasına ve dolayısıyla ömürlerinin kısalmasına neden olur. Eritrositler, sitoplazmalarında bulundurdukları hemoglobin sayesinde bol miktarda oksijeni bağlayabilmelerine rağmen, oksijeni enerji üretiminde kullanamazlar. Birçok dokuda oksidatif stresin asıl kaynağı mitokondri ve peroksizomlardır, ancak eritrositlerde bu organeller bulunmaz. Eritrositlerde oksidasyonu katalizleyen bu organellerin bulunmamasına rağmen, organizmada oksidatif stresten en fazla etkilenen hücrelerin başında eritrositler yer almaktadır. Eritrositlerde meydana gelen oksidatif stresin temelini içerdikleri hemoglobin ve demir atomu oluşturur. Bu derlemede, eritrositlerin maruz kaldığı özgül oksidatif stres mekanizmalarının, hücrede meydana gelen değişikliklerin ve bu stresi alt edebilecek hücre içi koruyucu sistemlerin neler olduğu sistematik olarak tartışılmıştır.

References

  • 1. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Vol. 24, Cellular Signalling. 2012. p. 981–90.
  • 2. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–54.
  • 3. Cho KJ, Seo JM, Kim JH. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Vol. 32, Molecules and Cells. 2011. p. 1–5. 4. Amer J, Fibach E. Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. Br J Haematol. 2005;129(3):435–41.
  • 5. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Vol. 2016, Oxidative Medicine and Cellular Longevity. 2016.
  • 6. Pandey KB, Rizvi SI. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev. 2010;3(1):2–12.
  • 7. Kanczler JM, Millar TM, Bodamyali T, Blake DR, Stevens CR. Xanthine oxidase mediates cytokine-induced, but not hormone-induced bone resorption. Vol. 37, Free Radical Research. 2003. p. 179–87.
  • 8. De Franceschi L, Bertoldi M, Matte A, Santos Franco S, Pantaleo A, Ferru E, et al. Oxidative stress and β -thalassemic erythroid cells behind the molecular defect. Oxidative Medicine and Cellular Longevity. 2013.
  • 9. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Vol. 2017, Oxidative Medicine and Cellular Longevity. 2017.
  • 10. Tan BL, Norhaizan ME, Liew WPP, Rahman HS. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Vol. 9, Frontiers in Pharmacology. 2018.
  • 11. Elmas O, Erbas O, Yigitturk G. The efficacy of Aesculus hippocastanum seeds on diabetic nephropathy in a streptozotocin-induced diabetic rat model. Biomed Pharmacother. 2016;83:392–6.
  • 12. Gokcimen A, Kocak A, Gulle K, Sutcu R, Elmas O, Caliskan S, et al. The effect of allopurinol on rat liver and spleen tissues in a chronic hyperammonemia animal model. Saudi Med J. 2007;28(11):1648–53.
  • 13. Elmas O, Elmas O, Caliskan S. Investigation of the oxidative effect of chronic hyperammonemia on the kidney and the possible protective effect of allopurinol. Ren Fail. 2011;33(1):61–5.
  • 14. Elmas O, Elmas O, Aliciguzel Y, Simsek T. The relationship between hypertension and plasma allantoin, uric acid, xanthine oxidase activity and nitrite, and their predictive capacity in severe preeclampsia. J Obstet Gynaecol (Lahore). 2016;36(1):34–8.
  • 15. Aslan M, Canatan D. Modulation of redox pathways in neutrophils from sickle cell disease patients. Exp Hematol. 2008;36(11):1535–44.
  • 16. Diez-Silva M, Dao M, Han J, Lim C-T, Suresh S. Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease. MRS Bull. 2010;35(5):382–8.
  • 17. Shah S, Huang X, Cheng L. Concise Review: Stem Cell-Based Approaches to Red Blood Cell Production for Transfusion. Stem Cells Transl Med. 2014;3(3):346–55.
  • 18. Matteucci E, Giampietro O. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker? Biomark Insights. 2007;2:117727190700200.
  • 19. Farid Y, Lecat P. Biochemistry, Hemoglobin Synthesis [Internet]. StatPearls. 2019.
  • 20. Pascual-Ahuir A, Manzanares-Estreder S, Proft M. Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. Vol. 2017, Oxidative Medicine and Cellular Longevity. 2017.
  • 21. Umbreit J. Methemoglobin - It’s not just blue: A concise review. Vol. 82, American Journal of Hematology. 2007. p. 134–44.
  • 22. Rifkind JM, Mohanty JG, Nagababu E. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Vol. 6, Frontiers in Physiology. 2015.
  • 23. Kanias T, Acker JP. Biopreservation of red blood cells - The struggle with hemoglobin oxidation. Vol. 277, FEBS Journal. 2010. p. 343–56.
  • 24. Simoni J, Simoni G, Lox CD, Feola M. Reaction of human endothelial cells to bovine hemoglobin solutions and tumor necrosis factor. Artif Cells, Blood Substitutes, Biotechnol. 1994;22(3):777–87.
  • 25. Van Zwieten R, Verhoeven AJ, Roos D. Inborn defects in the antioxidant systems of human red blood cells. Vol. 67, Free Radical Biology and Medicine. 2014. p. 377–86.
  • 26. Bunn HF, Jandl JH. Exchange of heme among hemoglobins and between hemoglobin and albumin. J Biol Chem. 1968;243(3):465–75.
  • 27. Nagababu E, Rifkind JM. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem Biophys Res Commun. 1998;247(3):592–6.
  • 28. Sadrzadeh SMH, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic Fenton reagent. J Biol Chem. 1984;259(23):14354–6.
  • 29. Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow‐Walden L, Chuang J, et al. A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res. 1995;18(1):1–11.
  • 30. Shalev O, Repka T, Goldfarb A, Grinberg L, Abrahamov A, Olivieri NF, et al. Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo. Blood. 1995;86(5):2008–13.
  • 31. Balla J, Jacob HS, Balla G, Nath K, Eaton JW, Vercellotti GM. Endothelial-cell heme uptake from heme proteins: Induction of sensitization and desensitization to oxidant damage. Proc Natl Acad Sci U S A. 1993;90(20):9285–9.
  • 32. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002;100(3):879–87.
  • 33. Wagener FADTG, Feldman E, De Witte T, Abraham NG. Heme Induces the Expression of Adhesion Molecules ICAM-1, VCAM-1, and E Selectin in Vascular Endothelial Cells. Exp Biol Med. 1997;216(3):456–63.
  • 34. Tracz MJ, Alam J, Nath KA. Physiology and pathophysiology of heme: Implications for kidney disease. Vol. 18, Journal of the American Society of Nephrology. 2007. p. 414–20.
  • 35. George A, Pushkaran S, Konstantinidis DG, Koochaki S, Malik P, Mohandas N, et al. Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood. 2013;121(11):2099–107.
  • 36. Balagopalakrishna C, Manoharan PT, Abugo OO, Rifkind JM. Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions. Biochemistry. 1996;35(20):6393–8.
  • 37. Cao Z, Bell JB, Mohanty JG, Nagababu E, Rifkind JM. Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: A new mechanism for nitrite-induced vasodilation. Am J Physiol - Hear Circ Physiol. 2009;297(4).
  • 38. Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Vol. 5 FEB, Frontiers in Physiology. 2014.
  • 39. Barodka VM, Nagababu E, Mohanty JG, Nyhan D, Berkowitz DE, Rifkind JM, et al. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease. Blood Cells, Mol Dis. 2014;52(4):230–5.
  • 40. May JM. Ascorbate function and metabolism in the human erythrocyte. Vol. 3, Frontiers in bioscience : a journal and virtual library. 1998.
  • 41. Nagababu E, Chrest FJ, Rifkind JM. Hydrogen-peroxide-induced heme degradation in red blood cells: The protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta - Gen Subj. 2003;1620(1–3):211–7.
  • 42. Nagababu E, Mohanty JG, Friedman JS, Rifkind JM. Role of peroxiredoxin-2 in protecting RBCs from hydrogen peroxide-induced oxidative stress. Free Radic Res. 2013;47(3):164–71.
  • 43. Clemens MR, Waller HD. Lipid peroxidation in erythrocytes. Chem Phys Lipids. 1987;45(2–4):251–68.
  • 44. Kuypers FA, de Jong K. The role of phosphatidylserine in recognition and removal of erythrocytes. Vol. 50, Cellular and molecular biology (Noisy-le-Grand, France). 2004. p. 147–58.
  • 45. Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Vol. 32, Cardiovascular Research. 1996. p. 654–67.
  • 46. Ibrahim HA, Fouda MI, Yahya RS, Abousamra NK, Abd Elazim RA. Erythrocyte phosphatidylserine exposure in β-thalassemia. Lab Hematol. 2014;20(2):9–14.
  • 47. Kiefer CR, Snyder LM. Oxidation and erythrocyte senescence. Curr Opin Hematol. 2000;7(2):113–6.
  • 48. Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Vol. 39, Seminars in Cell and Developmental Biology. 2015. p. 35–42.
  • 49. Pantaleo A, Giribaldi G, Mannu F, Arese P, Turrini F. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions. Vol. 7, Autoimmunity Reviews. 2008. p. 457–62.
  • 50. Rachmilewitz EA, Weizer-Stern O, Adamsky K, Amariglio N, Rechavi G, Breda L, et al. Role of iron in inducing oxidative stress in thalassemia: Can it be prevented by inhibition of absorption and by antioxidants? In: Annals of the New York Academy of Sciences. 2005. p. 118–23.
  • 51. Bordin L, Brunati AM, Donella-Deana A, Baggio B, Toninello A, Clari G. Band 3 is an anchor protein and a target for SHP-2 tyrosine phosphatase in human erythrocytes. Blood. 2002;100(1):276–82.
  • 52. Mannu F, Arese P, Cappellini MD, Fiorelli G, Cappadoro M, Giribaldi G, et al. Role of hemichrome binding to erythrocyte membrane in the generation of band-3 alterations in β-thalassemia intermedia erythrocytes. Blood. 1995;86(5):2014–20.
  • 53. Ferru E, Giger K, Pantaleo A, Campanella E, Grey J, Ritchie K, et al. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood. 2011;117(22):5998–6006.
  • 54. Lutz HU, Nater M, Stammler P. Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology [Internet]. 1993;80(2):191–6.
  • 55. Kannan R, Labotka R, Low PS. Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. Major site of autologous antibody binding. J Biol Chem. 1988;263(27):13766–73.
  • 56. Harrison ML, Rathinavelu P, Arese P, Geahlen RL, Low PS. Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem. 1991;266(7):4106–11.
  • 57. Beutler E. Red cell metabolism. A. Defects not causing hemolytic disease. B. Environmental modification. Biochimie. 1972;54(5–6):759–64.
  • 58. Shinar E, Rachmilewitz EA, Lux SE. Differing erythrocyte membrane skeletal protein defects in alpha and beta thalassemia. J Clin Invest. 1989;83(2):404–10.
  • 59. George A, Pushkaran S, Li L, An X, Zheng Y, Mohandas N, et al. Altered phosphorylation of cytoskeleton proteins in sickle red blood cells: The role of protein kinase C, Rac GTPases, and reactive oxygen species. Blood Cells, Mol Dis. 2010;45(1):41–5.
  • 60. Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Vol. 37, Free Radical Biology and Medicine. 2004. p. 1921–42.
  • 61. Omura T. Heme-thiolate proteins. Vol. 338, Biochemical and Biophysical Research Communications. 2005. p. 404–9.
  • 62. Matarrese P, Straface E, Pietraforte D, Gambardella L, Vona R, Maccaglia A, et al. Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J. 2005;19(3):1–27.
  • 63. Clementi ME, Giardina B, Colucci D, Galtieri A, Misiti F. Amyloid-beta peptide affects the oxygen dependence of erythrocyte metabolism: A role for caspase 3. Int J Biochem Cell Biol. 2007;39(4):727–35.
  • 64. Zeuner A, Eramo A, Testa U, Felli N, Pelosi E, Mariani G, et al. Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Vol. 10, Cell Death and Differentiation. 2003. p. 905–13.
  • 65. De Maria R, Zeuner A, Eramo A, Domenichelli C, Bonci D, Grignani F, et al. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature. 1999;401(6752):489–93.
  • 66. Mandal D, Baudin-Creuza V, Bhattacharyya A, Pathak S, Delaunay J, Kundu M, et al. Caspase 3-mediated Proteolysis of the N-terminal Cytoplasmic Domain of the Human Erythroid Anion Exchanger 1 (Band 3). J Biol Chem. 2003;278(52):52551–8.
  • 67. Mandal D, Mazumder A, Das P, Kundu M, Basu J. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem. 2005;280(47):39460–7.
  • 68. Föller M, Harris IS, Elia A, John R, Lang F, Kavanagh TJ, et al. Functional significance of glutamate-cysteine ligase modifier for erythrocyte survival in vitro and in vivo. Cell Death Differ. 2013;20(10):1350–8.
  • 69. Redding GS, Record DM, Raess BU. Calcium-Stressed Erythrocyte Membrane Structure and Function for Assessing Glipizide Effects on Transglutaminase Activation. Proc Soc Exp Biol Med. 1991;196(1):76–82.
  • 70. Zipser Y, Piade A, Barbul A, Korenstein R, Kosower NS. Ca2+ promotes erythrocyte band 3 tyrosine phosphorylation via dissociation of phosphotyrosine phosphatase from band 3. Biochem J. 2002;368(1):137–44.
  • 71. Burger P, Kostova E, Bloem E, Hilarius-Stokman P, Meijer AB, van den Berg TK, et al. Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol. 2013;160(3):377–86.
  • 72. Ney PA, Christopher MM, Hebbel RP. Synergistic effects of oxidation and deformation on erythrocyte monovalent cation leak. Blood. 1990;75(5):1192–8.
  • 73. Willekens FLA, Werre JM, Groenen-Döpp YAM, Roerdinkholder-Stoelwinder B, De Pauw B, Bosman GJCGM. Erythrocyte vesiculation: A self-protective mechanism? Br J Haematol. 2008;141(4):549–56.
  • 74. Barodka V, Mohanty JG, Mustafa AK, Santhanam L, Nyhan A, Bhunia AK, et al. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion. 2014;54(2):434–44.
  • 75. Olivieri O, De Franceschi L, Capellini MD, Girelli D, Corrocher R, Brugnara C. Oxidative damage and erythrocyte membrane transport abnormalities in thalassemias. Blood. 1994;84(1):315–20.
  • 76. De Franceschi L, Ronzoni L, Cappellini MD, Cimmino F, Siciliano A, Alper SL, et al. K-CL co-transport plays an important role in normal and β thalassemic erythropoiesis. Haematologica. 2007;92(10):1319–26.
  • 77. Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, et al. Functional significance of cell volume regulatory mechanisms. Vol. 78, Physiological Reviews. 1998. p. 247–306.
  • 78. Ribeil JA, Arlet JB, Dussiot M, Cruz Moura I, Courtois G, Hermine O. Ineffective erythropoiesis in β-thalassemia. Sci World J. 2013;2013.
  • 79. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451–9.
  • 80. Angelucci E, Bai H, Centis F, Bafti MS, Lucarelli G, Ma L, et al. Enhanced macrophagic attack on β-thalassemia major erythroid precursors. Haematologica. 2002;87(6):578–83.
  • 81. Centis F, Tabellini L, Lucarelli G, Buffi O, Tonucci P, Persini B, et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood. 2000;96(10):3624–9.
  • 82. Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med. 2014;20(4):398–407.
  • 83. Mathias LA, Fisher TC, Zeng L, Meiselman HJ, Weinberg KI, Hiti AL, et al. Ineffective erythropoiesis in β-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol. 2000;28(12):1343–53.
  • 84. Leecharoenkiat A, Wannatung T, Lithanatudom P, Svasti S, Fucharoen S, Chokchaichamnankit D, et al. Increased oxidative metabolism is associated with erythroid precursor expansion in β 0-thalassaemia/Hb E disease. Blood Cells, Mol Dis. 2011;47(3):143– 57.
  • 85. Percy MJ, Lappin TR. Recessive congenital methaemoglobinaemia: Cytochrome b5 reductase deficiency. Br J Haematol. 2008;141(3):298–308.
  • 86. Ogasawara Y, Funakoshi M, Ishii K. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes. Blood Cells, Mol Dis. 2008;41(3):237–43.
  • 87. Begas P, Liedgens L, Moseler A, Meyer AJ, Deponte M. Glutaredoxin catalysis requires two distinct glutathione interaction sites. Nat Commun. 2017;8.
  • 88. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling. Vol. 19, Antioxidants and Redox Signaling. 2013. p. 1539–605.
  • 89. Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Vol. 267, European Journal of Biochemistry. 2000. p. 6102–9.
  • 90. Mannervik B. The enzymes of glutathione metabolism: an overview. Vol. 15, Biochemical Society transactions. 1987. p. 717–8.
  • 91. de Franceschi L, Bertoldi M, de Falco L, Franco SS, Ronzoni L, Turrini F, et al. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis. Haematologica. 2011;96(11):1595–604.
  • 92. Matte A, Bertoldi M, Mohandas N, An X, Bugatti A, Brunati AM, et al. Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3. Free Radic Biol Med. 2013;55:27–35.
  • 93. Perrotta S, Borriello A, Scaloni A, De Franceschi L, Brunati AM, Turrini F, et al. The N-terminal 11 amino acids of human erythrocyte band 3 are critical for aldolase binding and protein phosphorylation: Implications for band 3 function. Blood. 2005;106(13):4359–65.
  • 94. Low FM, Hampton MB, Winterbourn CC. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte. Vol. 10, Antioxidants and Redox Signaling. 2008. p. 1621–9.
  • 95. Stuhlmeier KM, Kao JJ, Wallbrandt P, Lindberg M, Hammarström B, Broell H, et al. Antioxidant protein 2 prevents methemoglobin formation in erythrocyte hemolysates. Eur J Biochem. 2003;270(2):334–41.
  • 96. Harper VM, Oh JY, Stapley R, Marques MB, Wilson L, Barnes S, et al. Peroxiredoxin-2 recycling is inhibited during erythrocyte storage. Antioxidants Redox Signal. 2015;22(4):294–307.
  • 97. Yu X, Kong Y, Dore LC, Abdulmalik O, Katein AM, Zhou S, et al. An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis. J Clin Invest. 2007;117(7):1856–65.
  • 98. Zhou S, Olson JS, Fabian M, Weiss MJ, Gow AJ. Biochemical fates of α hemoglobin bound to α hemoglobin-stabilizing protein AHSP. J Biol Chem. 2006;281(43):32611–8.
  • 99. Feng L, Zhou S, Gu L, Gell DA, Mackay JP, Weiss MJ, et al. Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature. 2005;435(7042):697–701.
  • 100. Kong Y, Zhou S, Kihm AJ, Katein AM, Yu X, Gell DA, et al. Loss of α-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia. J Clin Invest. 2004;114(10):1457–66.
  • 101. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Vol. 10, Antioxidants and Redox Signaling. 2008. p. 1923–40.
  • 102. Paglialunga F, Fico A, Iaccarino I, Notaro R, Luzzatto L, Martini G, et al. G6PD is indispensable for erythropoiesis after the embryonic-adult hemoglobin switch. Blood. 2004;104(10):3148–52.
  • 103. Lu L, Han A-P, Chen J-J. Translation Initiation Control by Heme-Regulated Eukaryotic Initiation Factor 2alpha Kinase in Erythroid Cells under Cytoplasmic Stresses. Mol Cell Biol. 2001;21(23):7971–80.
  • 104. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.
  • 105. Suragani RNVS, Zachariah RS, Velazquez JG, Liu S, Sun CW, Townes TM, et al. Heme-regulated eIF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood. 2012;119(22):5276–84.
  • 106. Han AP, Fleming MD, Chen JJ. Heme-regulated eIF2α kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and β-thalassemia. J Clin Invest. 2005;115(6):1562–70.
  • 107. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest. 2007;117(8):2133–44.
  • 108. Kawatani Y, Suzuki T, Shimizu R, Kelly VP, Yamamoto M. Nrf2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia. Blood. 2011;117(3):986–96.
  • 109. Alam J, Killeen E, Gong P, Naquin R, Hu B, Stewart D, et al. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am J Physiol - Ren Physiol. 2003;284(4 53-4).
  • 110. Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, et al. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem. 2003;278(11):9125–33.
  • 111. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AMK, et al. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem. 2001;276(24):20858–65.
  • 112. Owusu-Ansah A, Choi SH, Petrosiute A, Letterio JJ, Huang AYC. Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: a review. Vol. 9, Frontiers of Medicine. 2015. p. 46–56.
  • 113. Essers MAG, Weijzen S, De Vries-Smits AMM, Saarloos I, De Ruiter ND, Bos JL, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 2004;23(24):4802–12.
  • 114. Martinez-Gac L, Marques M, Garcia Z, Campanero MR, Carrera AC. Control of Cyclin G2 mRNA Expression by Forkhead Transcription Factors: Novel Mechanism for Cell Cycle Control by Phosphoinositide 3-Kinase and Forkhead. Mol Cell Biol. 2004;24(5):2181–9.
  • 115. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ, DiStefano PS, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science (80- ). 2002;296(5567):530–4.
  • 116. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NSB, Lam EW-F, et al. Forkhead Transcription Factor FKHR-L1 Modulates Cytokine-Dependent Transcriptional Regulation of p27KIP1. Mol Cell Biol. 2000;20(24):9138–48.
  • 117. Ghaffari S, Jagani Z, Kitidis C, Lodish HF, Khosravi-Far R. Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci U S A. 2003;100(11):6523–8.
  • 118. Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science (80- ). 2002;295(5564):2450–2.
  • 119. Kops GJPL, Dansen TB, Polderman PE, Saarloos I, Wirtz KWA, Coffer PJ, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419(6904):316–21.
  • 120. Khandros E, Weiss MJ. Protein quality control during erythropoiesis and hemoglobin synthesis. Vol. 24, Hematology/Oncology Clinics of North America. 2010. p. 1071–88.
  • 121. Shaeffer JR. ATP-dependent proteolysis of hemoglobin α chains in β-thalassemic hemolysates is ubiquitin-dependent. J Biol Chem. 1988;263(27):13663–9.
  • 122. Vettore L, de Matteis MC, di Lorio EE, Winterhalter KH. Erythrocytic proteases: Preferential degradation of alpha hemoglobin chains. Acta Haematol. 1983;70(1):35–42.
  • 123. Khandros E, Thom CS, D’Souza J, Weiss MJ. Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia. Blood. 2012;119(22):5265–75.
  • 124. Braverman AS, Lester D. Evidence for increased proteolysis in intact β thalassemia erythroid cells. Hemoglobin. 1981;5(6):549–64.
  • 125. Etlinger JD, Goldberg AL. A soluble ATP dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A. 1977;74(1):54–8.
  • 126. Kang Y-A, Sanalkumar R, O’Geen H, Linnemann AK, Chang C-J, Bouhassira EE, et al. Autophagy Driven by a Master Regulator of Hematopoiesis. Mol Cell Biol. 2012;32(1):226–39.
  • 127. Wickramasinghe SN, Bush V. Observations on the Ultrastructure of Erythropoietic Cells and Reticulum Cells in the Bone Marrow of Patients with Homozygous β‐Thalassaemia. Br J Haematol. 1975;30(4):395–9.
  • 128. Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Vol. 10, Trends in Cell Biology. 2000. p. 524–30.

Specific Mechanisms and Protective Antioxidant Systems Playing Role in Occurring Oxidative Stress in Erythrocytes

Year 2020, , 170 - 179, 29.12.2020
https://doi.org/10.47572/muskutd.827917

Abstract

Erythrocytes are specialized cells that are the most abundant in the blood and whose main task is to carry respiratory gases. Reactive oxygen species can disrupt the structure and the function of erythrocytes or their precursors by causing oxidation of lipids, nucleic acids, proteins, sugars, or sterols. In particular, oxidation of cell membranes causes increased fragility in erythrocytes and thus shortening their lifespan. Erythrocytes, despite their ability to bind abundant oxygen due to the hemoglobin they contain in their cytoplasm, they cannot use oxygen in energy production. The main source of oxidative stress in many tissues are mitochondrias and peroxisomes, but these organelles are not found in erythrocytes. Despite the absence of these organelles catalyzing oxidation in erythrocytes, erythrocytes are at the head of the cells most affected by oxidative stress in the organism. The basis of oxidative stress occurring in erythrocytes are hemoglobins and iron atoms. In this review, the specific oxidative stress mechanisms that erythrocytes are exposed to, the changes that occur in the cells, and the intracellular protective systems that can overcome this stress are systematically discussed.

References

  • 1. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Vol. 24, Cellular Signalling. 2012. p. 981–90.
  • 2. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–54.
  • 3. Cho KJ, Seo JM, Kim JH. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Vol. 32, Molecules and Cells. 2011. p. 1–5. 4. Amer J, Fibach E. Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. Br J Haematol. 2005;129(3):435–41.
  • 5. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Vol. 2016, Oxidative Medicine and Cellular Longevity. 2016.
  • 6. Pandey KB, Rizvi SI. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev. 2010;3(1):2–12.
  • 7. Kanczler JM, Millar TM, Bodamyali T, Blake DR, Stevens CR. Xanthine oxidase mediates cytokine-induced, but not hormone-induced bone resorption. Vol. 37, Free Radical Research. 2003. p. 179–87.
  • 8. De Franceschi L, Bertoldi M, Matte A, Santos Franco S, Pantaleo A, Ferru E, et al. Oxidative stress and β -thalassemic erythroid cells behind the molecular defect. Oxidative Medicine and Cellular Longevity. 2013.
  • 9. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Vol. 2017, Oxidative Medicine and Cellular Longevity. 2017.
  • 10. Tan BL, Norhaizan ME, Liew WPP, Rahman HS. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Vol. 9, Frontiers in Pharmacology. 2018.
  • 11. Elmas O, Erbas O, Yigitturk G. The efficacy of Aesculus hippocastanum seeds on diabetic nephropathy in a streptozotocin-induced diabetic rat model. Biomed Pharmacother. 2016;83:392–6.
  • 12. Gokcimen A, Kocak A, Gulle K, Sutcu R, Elmas O, Caliskan S, et al. The effect of allopurinol on rat liver and spleen tissues in a chronic hyperammonemia animal model. Saudi Med J. 2007;28(11):1648–53.
  • 13. Elmas O, Elmas O, Caliskan S. Investigation of the oxidative effect of chronic hyperammonemia on the kidney and the possible protective effect of allopurinol. Ren Fail. 2011;33(1):61–5.
  • 14. Elmas O, Elmas O, Aliciguzel Y, Simsek T. The relationship between hypertension and plasma allantoin, uric acid, xanthine oxidase activity and nitrite, and their predictive capacity in severe preeclampsia. J Obstet Gynaecol (Lahore). 2016;36(1):34–8.
  • 15. Aslan M, Canatan D. Modulation of redox pathways in neutrophils from sickle cell disease patients. Exp Hematol. 2008;36(11):1535–44.
  • 16. Diez-Silva M, Dao M, Han J, Lim C-T, Suresh S. Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease. MRS Bull. 2010;35(5):382–8.
  • 17. Shah S, Huang X, Cheng L. Concise Review: Stem Cell-Based Approaches to Red Blood Cell Production for Transfusion. Stem Cells Transl Med. 2014;3(3):346–55.
  • 18. Matteucci E, Giampietro O. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker? Biomark Insights. 2007;2:117727190700200.
  • 19. Farid Y, Lecat P. Biochemistry, Hemoglobin Synthesis [Internet]. StatPearls. 2019.
  • 20. Pascual-Ahuir A, Manzanares-Estreder S, Proft M. Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. Vol. 2017, Oxidative Medicine and Cellular Longevity. 2017.
  • 21. Umbreit J. Methemoglobin - It’s not just blue: A concise review. Vol. 82, American Journal of Hematology. 2007. p. 134–44.
  • 22. Rifkind JM, Mohanty JG, Nagababu E. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Vol. 6, Frontiers in Physiology. 2015.
  • 23. Kanias T, Acker JP. Biopreservation of red blood cells - The struggle with hemoglobin oxidation. Vol. 277, FEBS Journal. 2010. p. 343–56.
  • 24. Simoni J, Simoni G, Lox CD, Feola M. Reaction of human endothelial cells to bovine hemoglobin solutions and tumor necrosis factor. Artif Cells, Blood Substitutes, Biotechnol. 1994;22(3):777–87.
  • 25. Van Zwieten R, Verhoeven AJ, Roos D. Inborn defects in the antioxidant systems of human red blood cells. Vol. 67, Free Radical Biology and Medicine. 2014. p. 377–86.
  • 26. Bunn HF, Jandl JH. Exchange of heme among hemoglobins and between hemoglobin and albumin. J Biol Chem. 1968;243(3):465–75.
  • 27. Nagababu E, Rifkind JM. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem Biophys Res Commun. 1998;247(3):592–6.
  • 28. Sadrzadeh SMH, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic Fenton reagent. J Biol Chem. 1984;259(23):14354–6.
  • 29. Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow‐Walden L, Chuang J, et al. A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res. 1995;18(1):1–11.
  • 30. Shalev O, Repka T, Goldfarb A, Grinberg L, Abrahamov A, Olivieri NF, et al. Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo. Blood. 1995;86(5):2008–13.
  • 31. Balla J, Jacob HS, Balla G, Nath K, Eaton JW, Vercellotti GM. Endothelial-cell heme uptake from heme proteins: Induction of sensitization and desensitization to oxidant damage. Proc Natl Acad Sci U S A. 1993;90(20):9285–9.
  • 32. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002;100(3):879–87.
  • 33. Wagener FADTG, Feldman E, De Witte T, Abraham NG. Heme Induces the Expression of Adhesion Molecules ICAM-1, VCAM-1, and E Selectin in Vascular Endothelial Cells. Exp Biol Med. 1997;216(3):456–63.
  • 34. Tracz MJ, Alam J, Nath KA. Physiology and pathophysiology of heme: Implications for kidney disease. Vol. 18, Journal of the American Society of Nephrology. 2007. p. 414–20.
  • 35. George A, Pushkaran S, Konstantinidis DG, Koochaki S, Malik P, Mohandas N, et al. Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood. 2013;121(11):2099–107.
  • 36. Balagopalakrishna C, Manoharan PT, Abugo OO, Rifkind JM. Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions. Biochemistry. 1996;35(20):6393–8.
  • 37. Cao Z, Bell JB, Mohanty JG, Nagababu E, Rifkind JM. Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: A new mechanism for nitrite-induced vasodilation. Am J Physiol - Hear Circ Physiol. 2009;297(4).
  • 38. Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Vol. 5 FEB, Frontiers in Physiology. 2014.
  • 39. Barodka VM, Nagababu E, Mohanty JG, Nyhan D, Berkowitz DE, Rifkind JM, et al. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease. Blood Cells, Mol Dis. 2014;52(4):230–5.
  • 40. May JM. Ascorbate function and metabolism in the human erythrocyte. Vol. 3, Frontiers in bioscience : a journal and virtual library. 1998.
  • 41. Nagababu E, Chrest FJ, Rifkind JM. Hydrogen-peroxide-induced heme degradation in red blood cells: The protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta - Gen Subj. 2003;1620(1–3):211–7.
  • 42. Nagababu E, Mohanty JG, Friedman JS, Rifkind JM. Role of peroxiredoxin-2 in protecting RBCs from hydrogen peroxide-induced oxidative stress. Free Radic Res. 2013;47(3):164–71.
  • 43. Clemens MR, Waller HD. Lipid peroxidation in erythrocytes. Chem Phys Lipids. 1987;45(2–4):251–68.
  • 44. Kuypers FA, de Jong K. The role of phosphatidylserine in recognition and removal of erythrocytes. Vol. 50, Cellular and molecular biology (Noisy-le-Grand, France). 2004. p. 147–58.
  • 45. Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Vol. 32, Cardiovascular Research. 1996. p. 654–67.
  • 46. Ibrahim HA, Fouda MI, Yahya RS, Abousamra NK, Abd Elazim RA. Erythrocyte phosphatidylserine exposure in β-thalassemia. Lab Hematol. 2014;20(2):9–14.
  • 47. Kiefer CR, Snyder LM. Oxidation and erythrocyte senescence. Curr Opin Hematol. 2000;7(2):113–6.
  • 48. Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Vol. 39, Seminars in Cell and Developmental Biology. 2015. p. 35–42.
  • 49. Pantaleo A, Giribaldi G, Mannu F, Arese P, Turrini F. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions. Vol. 7, Autoimmunity Reviews. 2008. p. 457–62.
  • 50. Rachmilewitz EA, Weizer-Stern O, Adamsky K, Amariglio N, Rechavi G, Breda L, et al. Role of iron in inducing oxidative stress in thalassemia: Can it be prevented by inhibition of absorption and by antioxidants? In: Annals of the New York Academy of Sciences. 2005. p. 118–23.
  • 51. Bordin L, Brunati AM, Donella-Deana A, Baggio B, Toninello A, Clari G. Band 3 is an anchor protein and a target for SHP-2 tyrosine phosphatase in human erythrocytes. Blood. 2002;100(1):276–82.
  • 52. Mannu F, Arese P, Cappellini MD, Fiorelli G, Cappadoro M, Giribaldi G, et al. Role of hemichrome binding to erythrocyte membrane in the generation of band-3 alterations in β-thalassemia intermedia erythrocytes. Blood. 1995;86(5):2014–20.
  • 53. Ferru E, Giger K, Pantaleo A, Campanella E, Grey J, Ritchie K, et al. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood. 2011;117(22):5998–6006.
  • 54. Lutz HU, Nater M, Stammler P. Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology [Internet]. 1993;80(2):191–6.
  • 55. Kannan R, Labotka R, Low PS. Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. Major site of autologous antibody binding. J Biol Chem. 1988;263(27):13766–73.
  • 56. Harrison ML, Rathinavelu P, Arese P, Geahlen RL, Low PS. Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem. 1991;266(7):4106–11.
  • 57. Beutler E. Red cell metabolism. A. Defects not causing hemolytic disease. B. Environmental modification. Biochimie. 1972;54(5–6):759–64.
  • 58. Shinar E, Rachmilewitz EA, Lux SE. Differing erythrocyte membrane skeletal protein defects in alpha and beta thalassemia. J Clin Invest. 1989;83(2):404–10.
  • 59. George A, Pushkaran S, Li L, An X, Zheng Y, Mohandas N, et al. Altered phosphorylation of cytoskeleton proteins in sickle red blood cells: The role of protein kinase C, Rac GTPases, and reactive oxygen species. Blood Cells, Mol Dis. 2010;45(1):41–5.
  • 60. Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Vol. 37, Free Radical Biology and Medicine. 2004. p. 1921–42.
  • 61. Omura T. Heme-thiolate proteins. Vol. 338, Biochemical and Biophysical Research Communications. 2005. p. 404–9.
  • 62. Matarrese P, Straface E, Pietraforte D, Gambardella L, Vona R, Maccaglia A, et al. Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J. 2005;19(3):1–27.
  • 63. Clementi ME, Giardina B, Colucci D, Galtieri A, Misiti F. Amyloid-beta peptide affects the oxygen dependence of erythrocyte metabolism: A role for caspase 3. Int J Biochem Cell Biol. 2007;39(4):727–35.
  • 64. Zeuner A, Eramo A, Testa U, Felli N, Pelosi E, Mariani G, et al. Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Vol. 10, Cell Death and Differentiation. 2003. p. 905–13.
  • 65. De Maria R, Zeuner A, Eramo A, Domenichelli C, Bonci D, Grignani F, et al. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature. 1999;401(6752):489–93.
  • 66. Mandal D, Baudin-Creuza V, Bhattacharyya A, Pathak S, Delaunay J, Kundu M, et al. Caspase 3-mediated Proteolysis of the N-terminal Cytoplasmic Domain of the Human Erythroid Anion Exchanger 1 (Band 3). J Biol Chem. 2003;278(52):52551–8.
  • 67. Mandal D, Mazumder A, Das P, Kundu M, Basu J. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem. 2005;280(47):39460–7.
  • 68. Föller M, Harris IS, Elia A, John R, Lang F, Kavanagh TJ, et al. Functional significance of glutamate-cysteine ligase modifier for erythrocyte survival in vitro and in vivo. Cell Death Differ. 2013;20(10):1350–8.
  • 69. Redding GS, Record DM, Raess BU. Calcium-Stressed Erythrocyte Membrane Structure and Function for Assessing Glipizide Effects on Transglutaminase Activation. Proc Soc Exp Biol Med. 1991;196(1):76–82.
  • 70. Zipser Y, Piade A, Barbul A, Korenstein R, Kosower NS. Ca2+ promotes erythrocyte band 3 tyrosine phosphorylation via dissociation of phosphotyrosine phosphatase from band 3. Biochem J. 2002;368(1):137–44.
  • 71. Burger P, Kostova E, Bloem E, Hilarius-Stokman P, Meijer AB, van den Berg TK, et al. Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol. 2013;160(3):377–86.
  • 72. Ney PA, Christopher MM, Hebbel RP. Synergistic effects of oxidation and deformation on erythrocyte monovalent cation leak. Blood. 1990;75(5):1192–8.
  • 73. Willekens FLA, Werre JM, Groenen-Döpp YAM, Roerdinkholder-Stoelwinder B, De Pauw B, Bosman GJCGM. Erythrocyte vesiculation: A self-protective mechanism? Br J Haematol. 2008;141(4):549–56.
  • 74. Barodka V, Mohanty JG, Mustafa AK, Santhanam L, Nyhan A, Bhunia AK, et al. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion. 2014;54(2):434–44.
  • 75. Olivieri O, De Franceschi L, Capellini MD, Girelli D, Corrocher R, Brugnara C. Oxidative damage and erythrocyte membrane transport abnormalities in thalassemias. Blood. 1994;84(1):315–20.
  • 76. De Franceschi L, Ronzoni L, Cappellini MD, Cimmino F, Siciliano A, Alper SL, et al. K-CL co-transport plays an important role in normal and β thalassemic erythropoiesis. Haematologica. 2007;92(10):1319–26.
  • 77. Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, et al. Functional significance of cell volume regulatory mechanisms. Vol. 78, Physiological Reviews. 1998. p. 247–306.
  • 78. Ribeil JA, Arlet JB, Dussiot M, Cruz Moura I, Courtois G, Hermine O. Ineffective erythropoiesis in β-thalassemia. Sci World J. 2013;2013.
  • 79. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451–9.
  • 80. Angelucci E, Bai H, Centis F, Bafti MS, Lucarelli G, Ma L, et al. Enhanced macrophagic attack on β-thalassemia major erythroid precursors. Haematologica. 2002;87(6):578–83.
  • 81. Centis F, Tabellini L, Lucarelli G, Buffi O, Tonucci P, Persini B, et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood. 2000;96(10):3624–9.
  • 82. Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med. 2014;20(4):398–407.
  • 83. Mathias LA, Fisher TC, Zeng L, Meiselman HJ, Weinberg KI, Hiti AL, et al. Ineffective erythropoiesis in β-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol. 2000;28(12):1343–53.
  • 84. Leecharoenkiat A, Wannatung T, Lithanatudom P, Svasti S, Fucharoen S, Chokchaichamnankit D, et al. Increased oxidative metabolism is associated with erythroid precursor expansion in β 0-thalassaemia/Hb E disease. Blood Cells, Mol Dis. 2011;47(3):143– 57.
  • 85. Percy MJ, Lappin TR. Recessive congenital methaemoglobinaemia: Cytochrome b5 reductase deficiency. Br J Haematol. 2008;141(3):298–308.
  • 86. Ogasawara Y, Funakoshi M, Ishii K. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes. Blood Cells, Mol Dis. 2008;41(3):237–43.
  • 87. Begas P, Liedgens L, Moseler A, Meyer AJ, Deponte M. Glutaredoxin catalysis requires two distinct glutathione interaction sites. Nat Commun. 2017;8.
  • 88. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling. Vol. 19, Antioxidants and Redox Signaling. 2013. p. 1539–605.
  • 89. Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Vol. 267, European Journal of Biochemistry. 2000. p. 6102–9.
  • 90. Mannervik B. The enzymes of glutathione metabolism: an overview. Vol. 15, Biochemical Society transactions. 1987. p. 717–8.
  • 91. de Franceschi L, Bertoldi M, de Falco L, Franco SS, Ronzoni L, Turrini F, et al. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis. Haematologica. 2011;96(11):1595–604.
  • 92. Matte A, Bertoldi M, Mohandas N, An X, Bugatti A, Brunati AM, et al. Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3. Free Radic Biol Med. 2013;55:27–35.
  • 93. Perrotta S, Borriello A, Scaloni A, De Franceschi L, Brunati AM, Turrini F, et al. The N-terminal 11 amino acids of human erythrocyte band 3 are critical for aldolase binding and protein phosphorylation: Implications for band 3 function. Blood. 2005;106(13):4359–65.
  • 94. Low FM, Hampton MB, Winterbourn CC. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte. Vol. 10, Antioxidants and Redox Signaling. 2008. p. 1621–9.
  • 95. Stuhlmeier KM, Kao JJ, Wallbrandt P, Lindberg M, Hammarström B, Broell H, et al. Antioxidant protein 2 prevents methemoglobin formation in erythrocyte hemolysates. Eur J Biochem. 2003;270(2):334–41.
  • 96. Harper VM, Oh JY, Stapley R, Marques MB, Wilson L, Barnes S, et al. Peroxiredoxin-2 recycling is inhibited during erythrocyte storage. Antioxidants Redox Signal. 2015;22(4):294–307.
  • 97. Yu X, Kong Y, Dore LC, Abdulmalik O, Katein AM, Zhou S, et al. An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis. J Clin Invest. 2007;117(7):1856–65.
  • 98. Zhou S, Olson JS, Fabian M, Weiss MJ, Gow AJ. Biochemical fates of α hemoglobin bound to α hemoglobin-stabilizing protein AHSP. J Biol Chem. 2006;281(43):32611–8.
  • 99. Feng L, Zhou S, Gu L, Gell DA, Mackay JP, Weiss MJ, et al. Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature. 2005;435(7042):697–701.
  • 100. Kong Y, Zhou S, Kihm AJ, Katein AM, Yu X, Gell DA, et al. Loss of α-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia. J Clin Invest. 2004;114(10):1457–66.
  • 101. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Vol. 10, Antioxidants and Redox Signaling. 2008. p. 1923–40.
  • 102. Paglialunga F, Fico A, Iaccarino I, Notaro R, Luzzatto L, Martini G, et al. G6PD is indispensable for erythropoiesis after the embryonic-adult hemoglobin switch. Blood. 2004;104(10):3148–52.
  • 103. Lu L, Han A-P, Chen J-J. Translation Initiation Control by Heme-Regulated Eukaryotic Initiation Factor 2alpha Kinase in Erythroid Cells under Cytoplasmic Stresses. Mol Cell Biol. 2001;21(23):7971–80.
  • 104. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.
  • 105. Suragani RNVS, Zachariah RS, Velazquez JG, Liu S, Sun CW, Townes TM, et al. Heme-regulated eIF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood. 2012;119(22):5276–84.
  • 106. Han AP, Fleming MD, Chen JJ. Heme-regulated eIF2α kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and β-thalassemia. J Clin Invest. 2005;115(6):1562–70.
  • 107. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest. 2007;117(8):2133–44.
  • 108. Kawatani Y, Suzuki T, Shimizu R, Kelly VP, Yamamoto M. Nrf2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia. Blood. 2011;117(3):986–96.
  • 109. Alam J, Killeen E, Gong P, Naquin R, Hu B, Stewart D, et al. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am J Physiol - Ren Physiol. 2003;284(4 53-4).
  • 110. Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, et al. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem. 2003;278(11):9125–33.
  • 111. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AMK, et al. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem. 2001;276(24):20858–65.
  • 112. Owusu-Ansah A, Choi SH, Petrosiute A, Letterio JJ, Huang AYC. Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: a review. Vol. 9, Frontiers of Medicine. 2015. p. 46–56.
  • 113. Essers MAG, Weijzen S, De Vries-Smits AMM, Saarloos I, De Ruiter ND, Bos JL, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 2004;23(24):4802–12.
  • 114. Martinez-Gac L, Marques M, Garcia Z, Campanero MR, Carrera AC. Control of Cyclin G2 mRNA Expression by Forkhead Transcription Factors: Novel Mechanism for Cell Cycle Control by Phosphoinositide 3-Kinase and Forkhead. Mol Cell Biol. 2004;24(5):2181–9.
  • 115. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ, DiStefano PS, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science (80- ). 2002;296(5567):530–4.
  • 116. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NSB, Lam EW-F, et al. Forkhead Transcription Factor FKHR-L1 Modulates Cytokine-Dependent Transcriptional Regulation of p27KIP1. Mol Cell Biol. 2000;20(24):9138–48.
  • 117. Ghaffari S, Jagani Z, Kitidis C, Lodish HF, Khosravi-Far R. Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci U S A. 2003;100(11):6523–8.
  • 118. Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science (80- ). 2002;295(5564):2450–2.
  • 119. Kops GJPL, Dansen TB, Polderman PE, Saarloos I, Wirtz KWA, Coffer PJ, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419(6904):316–21.
  • 120. Khandros E, Weiss MJ. Protein quality control during erythropoiesis and hemoglobin synthesis. Vol. 24, Hematology/Oncology Clinics of North America. 2010. p. 1071–88.
  • 121. Shaeffer JR. ATP-dependent proteolysis of hemoglobin α chains in β-thalassemic hemolysates is ubiquitin-dependent. J Biol Chem. 1988;263(27):13663–9.
  • 122. Vettore L, de Matteis MC, di Lorio EE, Winterhalter KH. Erythrocytic proteases: Preferential degradation of alpha hemoglobin chains. Acta Haematol. 1983;70(1):35–42.
  • 123. Khandros E, Thom CS, D’Souza J, Weiss MJ. Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia. Blood. 2012;119(22):5265–75.
  • 124. Braverman AS, Lester D. Evidence for increased proteolysis in intact β thalassemia erythroid cells. Hemoglobin. 1981;5(6):549–64.
  • 125. Etlinger JD, Goldberg AL. A soluble ATP dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A. 1977;74(1):54–8.
  • 126. Kang Y-A, Sanalkumar R, O’Geen H, Linnemann AK, Chang C-J, Bouhassira EE, et al. Autophagy Driven by a Master Regulator of Hematopoiesis. Mol Cell Biol. 2012;32(1):226–39.
  • 127. Wickramasinghe SN, Bush V. Observations on the Ultrastructure of Erythropoietic Cells and Reticulum Cells in the Bone Marrow of Patients with Homozygous β‐Thalassaemia. Br J Haematol. 1975;30(4):395–9.
  • 128. Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Vol. 10, Trends in Cell Biology. 2000. p. 524–30.
There are 127 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Onur Elmas 0000-0002-8380-0999

Sinem Elmas 0000-0002-2872-9990

Publication Date December 29, 2020
Submission Date November 18, 2020
Published in Issue Year 2020

Cite

APA Elmas, O., & Elmas, S. (2020). Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar ve Koruyucu Antioksidan Sistemler. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, 7(3), 170-179. https://doi.org/10.47572/muskutd.827917
AMA Elmas O, Elmas S. Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar ve Koruyucu Antioksidan Sistemler. MMJ. December 2020;7(3):170-179. doi:10.47572/muskutd.827917
Chicago Elmas, Onur, and Sinem Elmas. “Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar Ve Koruyucu Antioksidan Sistemler”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 7, no. 3 (December 2020): 170-79. https://doi.org/10.47572/muskutd.827917.
EndNote Elmas O, Elmas S (December 1, 2020) Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar ve Koruyucu Antioksidan Sistemler. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 7 3 170–179.
IEEE O. Elmas and S. Elmas, “Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar ve Koruyucu Antioksidan Sistemler”, MMJ, vol. 7, no. 3, pp. 170–179, 2020, doi: 10.47572/muskutd.827917.
ISNAD Elmas, Onur - Elmas, Sinem. “Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar Ve Koruyucu Antioksidan Sistemler”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 7/3 (December 2020), 170-179. https://doi.org/10.47572/muskutd.827917.
JAMA Elmas O, Elmas S. Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar ve Koruyucu Antioksidan Sistemler. MMJ. 2020;7:170–179.
MLA Elmas, Onur and Sinem Elmas. “Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar Ve Koruyucu Antioksidan Sistemler”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, vol. 7, no. 3, 2020, pp. 170-9, doi:10.47572/muskutd.827917.
Vancouver Elmas O, Elmas S. Eritrositlerde Oksidatif Stres Oluşumunda Rol Oynayan Özgül Mekanizmalar ve Koruyucu Antioksidan Sistemler. MMJ. 2020;7(3):170-9.