Research Article
BibTex RIS Cite

Yüksek ve Düşük Plastisiteli Killerde Polipropilen Elyafın Etkisi

Year 2024, , 178 - 187, 30.04.2024
https://doi.org/10.47112/neufmbd.2024.41

Abstract

Farklı katkılarla zemin stabilizasyonu uzun yıllardan beri geoteknik mühendislerinin ilgisini çekmektedir. Zemin stabilizasyonu ile zayıf zeminin taşıma kapasitesi arttırılmakta, toplam oturmalar azaltılmakta, dolgu ve şevlerin stabilitesi sağlanmakta, istinat duvarları desteklenmekte ve potansiyel sıvılaşma riskleri azaltılmaktadır. Bu metotlardan biri de zeminlerin katkı maddesi ile iyileştirilmesidir. Deney programında atık malzemenin değerlendirilmesi kapsamında stabilizasyon amacı ile polipropilen elyaf kullanılmıştır. Düşük ve yüksek plastisiteli killi zemine %0, %0.1, %0.5, %1.0, %1.5 polipropilen elyaf eklenmiştir. Çalışmada, hidrometre deneyi, özgül ağırlık deneyi, Atterberg limitleri, Standart proktor deneyi ve tek eksenli basınç dayanım deneyi yapılmıştır. Birleştirilmiş zemin sınıflandırma sistemine göre CL ve CH olarak belirlenen kil zemine elyaf ilave edilmesi, farklı kür süreleri sonunda mukavemet değerlerinde artışa neden olmuştur.

Ethical Statement

Makalemiz öğrencimin yüksek lisans tezinden hazırladık ve hiçbir yerde yayınlamadık

Supporting Institution

Necmettin Erbakan Üni.

Thanks

Necmettin Erb. Üni Müh. Fakültesi dekanlığımıza laboratuar desteklerinden dolayı teşekkür ederiz.

References

  • M. Yıldız, A. S. Soğancı, Effect of freezing and thawing on strength and permeability of lime stabilized clays, Scientia Iranica. 19 (2012), 1013–1017.
  • Y. Yenginar, M. Olgun, Optimizing installation parameters of DM columns in clay using Taguchi method, Bulletin of Engineering Geology and the Environment. 82(4) (2023), 145.
  • Y. Yenginar, A.A.M.M. Mobark, M. Olgun, Investigating the construction parameters of deep mixing columns in silty soils, International Advanced Researches and Engineering Journal. 5 (2021), 464-474.
  • A. S. Soğancı, Y. Yenginar, A. Orman, Geotechnical properties of clayey soils stabilized with marble dust and granulated blast furnace slag, KSCE Journal of Civil Engineering. 27(11) (2023), 4622–4634.
  • M. Jafari, M. Esna-ashari, Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze–thaw condition, Cold Regions Science and Technology. 82 (2012), 21–29.
  • Y. Li, X. Ling, L. Su, L. An, P. Li, Y. Zhao, Tensile strength of fiber reinforced soil under freeze-thaw condition, Cold Regions Science and Technology. 146 (2018), 53-59.
  • M.H. Maher, Y.C. Ho, Mechanical properties of kaolinite/fiber soil composite, Journal of Geotechnical Engineering. 120 (1994), 1381-1393.
  • M.S. Nataraj, K.L. McManis, Strength and deformation properties of soils reinforced with fibrillated fibers, Geosynthetics International. 4 (1997), 65-79.
  • I. Iasbik, D.C. De Lima, C.A.B. Carvalho, C.H.C. Silva, E. Minette, P.S.A. Barbosa, Geotechnical characterization of a clayey soil stabilized with polypropylene fiber using unconfined compression and resilient modulus testing data, ASTM Special Technical Publication. 1437 (2002),114-125.
  • E.C. Ang, L.J. Erik, Specimen size effects for fiber-reinforced silty clay in unconfined compression, Geotechnical Testing Journal. 26 (2003), 191-200.
  • Y. Cai, B. Shi, C.W.W. Ng, C.S. Tang, Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil, Engineering Geology. 87 (2006), 230-240.
  • A. Kumar, B.S. Walia, J. Mohan, Compressive strength of fiber reinforced highly compressible clay, Construction and Building Materials. 20 (2006), 1063-1068.
  • Z.H. Ozkul, G. Baykal, Shear strength of clay with rubber fiber inclusions, Geosynthetics International. 13 (2006),173-180.
  • S. D. Rafalko, T.L. Brandon, G.M. Filz, J. K. Mitchell, fiber reinforcement for rapid stabilization of soft clay soils, Transportation Research Record. 2026 (2007), 21-29.
  • Y. Yilmaz, Experimental investigation of the strength properties of sand-clay mixtures reinforced with randomly distributed discrete polypropylene fibers, Geosynthetics International. 16 (2009), 354-363.
  • T. Sengul, N. Akray, Y. Vitosoglu, Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils, Construction and Building Materials. 400 (2023).
  • K. Komal, S. Bawa, S. KantSharma, Laboratory investigation on the effect of polypropylene and nylon fiber on silt stabilized clay, Materials Today. 52 (2022), 1368-1376.
  • P.A. Suriya, S.P. Sangeetha, R. Abirami, P. Subathra, Stabilization of red soil using polypropylene, Materials Today. (2021), 5881-5884.
  • A.Y. Çetin, Yüksek Plastisiteli Kil Zeminlerin Alternatif Malzemeler İle Yüzeysel Zemin Stabilizasyonu, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2011.
  • M. Çetinkaya, Polipropilen Liflerin Uçucu Kül Zemin Karışımlarında Geoteknik Özelliklere Etkisi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2012.
  • ASTM D2487-17e1, Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA, 2020: ss. 1-10.
  • ASTM D6913/D6913M-17, Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. In: Book of Standards Volume: 04.09. ASTM International, West Conshohocken, PA, USA., ASTM International, West Conshohocken, PA, USA, 2021: ss. 1-34.
  • ASTM D7928-21e1, Standard test method for particle-size distribution (Gradation) of Fine-Grained Soils Using the Sedimentation(Hydrometer) Analysis. In: Book of Standards Volume: 04.09. ASTMInternational, West Conshohocken, PA, USA, ASTM International, West Conshohocken, PA, USA, 2021: ss. 1-27.
  • ASTM D4318-17e1, Standard test methods for liquid limit, plasticlimit, and plasticity index of soils. In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA., ASTM International, West Conshohocken, PA, USA, 2018: ss. 1-20.
  • ASTM D854-14, Standard test methods for specific gravity of soil solids by water pycnometer. In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA, 2016: ss. 1-8.
  • ASTM D698-12, Standard test methods for laboratory compaction characteristics of soil using standard effort. In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA.,ASTM International, West Conshohocken, PA, USA, 2021: ss. 1-13. 1-13
  • ASTM D2166, Standard test method for unconfined compressive strength of cohesive soil. In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA., West Conshohocken, PA, USA, 2016: ss. 1-7.

The Influence of Polypropylene Fiber on High and Low Plasticity Clay

Year 2024, , 178 - 187, 30.04.2024
https://doi.org/10.47112/neufmbd.2024.41

Abstract

Soil stabilization with different additives has attracted the attention of geotechnical engineers for many years. With soil stabilization, the bearing capacity of weak soil is increased, total settlements are reduced, the stability of fills and slopes is ensured, retaining walls are supported and potential liquefaction risks are reduced. One of these methods is the improvement of soils with additives. Polypropylene fiber was used for stabilization purposes within the scope of evaluation of waste material in the experimental program. 0%, 0.1%, 0.5%, 1.0%, 1.5% polypropylene fiber was added to low and high plasticity clay soil. In the study, hydrometer test, specific gravity test, Atterberg limits, Standard proctor test and uniaxial compressive strength test were performed. Adding fiber to the clay soil, designated as CL and CH according to the unified soil classification system, caused an increase in the strength values at the end of different curing periods.

References

  • M. Yıldız, A. S. Soğancı, Effect of freezing and thawing on strength and permeability of lime stabilized clays, Scientia Iranica. 19 (2012), 1013–1017.
  • Y. Yenginar, M. Olgun, Optimizing installation parameters of DM columns in clay using Taguchi method, Bulletin of Engineering Geology and the Environment. 82(4) (2023), 145.
  • Y. Yenginar, A.A.M.M. Mobark, M. Olgun, Investigating the construction parameters of deep mixing columns in silty soils, International Advanced Researches and Engineering Journal. 5 (2021), 464-474.
  • A. S. Soğancı, Y. Yenginar, A. Orman, Geotechnical properties of clayey soils stabilized with marble dust and granulated blast furnace slag, KSCE Journal of Civil Engineering. 27(11) (2023), 4622–4634.
  • M. Jafari, M. Esna-ashari, Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze–thaw condition, Cold Regions Science and Technology. 82 (2012), 21–29.
  • Y. Li, X. Ling, L. Su, L. An, P. Li, Y. Zhao, Tensile strength of fiber reinforced soil under freeze-thaw condition, Cold Regions Science and Technology. 146 (2018), 53-59.
  • M.H. Maher, Y.C. Ho, Mechanical properties of kaolinite/fiber soil composite, Journal of Geotechnical Engineering. 120 (1994), 1381-1393.
  • M.S. Nataraj, K.L. McManis, Strength and deformation properties of soils reinforced with fibrillated fibers, Geosynthetics International. 4 (1997), 65-79.
  • I. Iasbik, D.C. De Lima, C.A.B. Carvalho, C.H.C. Silva, E. Minette, P.S.A. Barbosa, Geotechnical characterization of a clayey soil stabilized with polypropylene fiber using unconfined compression and resilient modulus testing data, ASTM Special Technical Publication. 1437 (2002),114-125.
  • E.C. Ang, L.J. Erik, Specimen size effects for fiber-reinforced silty clay in unconfined compression, Geotechnical Testing Journal. 26 (2003), 191-200.
  • Y. Cai, B. Shi, C.W.W. Ng, C.S. Tang, Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil, Engineering Geology. 87 (2006), 230-240.
  • A. Kumar, B.S. Walia, J. Mohan, Compressive strength of fiber reinforced highly compressible clay, Construction and Building Materials. 20 (2006), 1063-1068.
  • Z.H. Ozkul, G. Baykal, Shear strength of clay with rubber fiber inclusions, Geosynthetics International. 13 (2006),173-180.
  • S. D. Rafalko, T.L. Brandon, G.M. Filz, J. K. Mitchell, fiber reinforcement for rapid stabilization of soft clay soils, Transportation Research Record. 2026 (2007), 21-29.
  • Y. Yilmaz, Experimental investigation of the strength properties of sand-clay mixtures reinforced with randomly distributed discrete polypropylene fibers, Geosynthetics International. 16 (2009), 354-363.
  • T. Sengul, N. Akray, Y. Vitosoglu, Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils, Construction and Building Materials. 400 (2023).
  • K. Komal, S. Bawa, S. KantSharma, Laboratory investigation on the effect of polypropylene and nylon fiber on silt stabilized clay, Materials Today. 52 (2022), 1368-1376.
  • P.A. Suriya, S.P. Sangeetha, R. Abirami, P. Subathra, Stabilization of red soil using polypropylene, Materials Today. (2021), 5881-5884.
  • A.Y. Çetin, Yüksek Plastisiteli Kil Zeminlerin Alternatif Malzemeler İle Yüzeysel Zemin Stabilizasyonu, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2011.
  • M. Çetinkaya, Polipropilen Liflerin Uçucu Kül Zemin Karışımlarında Geoteknik Özelliklere Etkisi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2012.
  • ASTM D2487-17e1, Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA, 2020: ss. 1-10.
  • ASTM D6913/D6913M-17, Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. In: Book of Standards Volume: 04.09. ASTM International, West Conshohocken, PA, USA., ASTM International, West Conshohocken, PA, USA, 2021: ss. 1-34.
  • ASTM D7928-21e1, Standard test method for particle-size distribution (Gradation) of Fine-Grained Soils Using the Sedimentation(Hydrometer) Analysis. In: Book of Standards Volume: 04.09. ASTMInternational, West Conshohocken, PA, USA, ASTM International, West Conshohocken, PA, USA, 2021: ss. 1-27.
  • ASTM D4318-17e1, Standard test methods for liquid limit, plasticlimit, and plasticity index of soils. In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA., ASTM International, West Conshohocken, PA, USA, 2018: ss. 1-20.
  • ASTM D854-14, Standard test methods for specific gravity of soil solids by water pycnometer. In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA, 2016: ss. 1-8.
  • ASTM D698-12, Standard test methods for laboratory compaction characteristics of soil using standard effort. In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA.,ASTM International, West Conshohocken, PA, USA, 2021: ss. 1-13. 1-13
  • ASTM D2166, Standard test method for unconfined compressive strength of cohesive soil. In: Book of Standards Volume: 04.08. ASTM International, West Conshohocken, PA, USA., West Conshohocken, PA, USA, 2016: ss. 1-7.
There are 27 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Articles
Authors

Ali Sinan Soğancı 0000-0002-3981-8788

Ali Orman 0000-0003-1346-4819

Publication Date April 30, 2024
Submission Date November 13, 2023
Acceptance Date March 10, 2024
Published in Issue Year 2024

Cite

APA Soğancı, A. S., & Orman, A. (2024). The Influence of Polypropylene Fiber on High and Low Plasticity Clay. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(1), 178-187. https://doi.org/10.47112/neufmbd.2024.41
AMA Soğancı AS, Orman A. The Influence of Polypropylene Fiber on High and Low Plasticity Clay. NEU Fen Muh Bil Der. April 2024;6(1):178-187. doi:10.47112/neufmbd.2024.41
Chicago Soğancı, Ali Sinan, and Ali Orman. “The Influence of Polypropylene Fiber on High and Low Plasticity Clay”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, no. 1 (April 2024): 178-87. https://doi.org/10.47112/neufmbd.2024.41.
EndNote Soğancı AS, Orman A (April 1, 2024) The Influence of Polypropylene Fiber on High and Low Plasticity Clay. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 1 178–187.
IEEE A. S. Soğancı and A. Orman, “The Influence of Polypropylene Fiber on High and Low Plasticity Clay”, NEU Fen Muh Bil Der, vol. 6, no. 1, pp. 178–187, 2024, doi: 10.47112/neufmbd.2024.41.
ISNAD Soğancı, Ali Sinan - Orman, Ali. “The Influence of Polypropylene Fiber on High and Low Plasticity Clay”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/1 (April 2024), 178-187. https://doi.org/10.47112/neufmbd.2024.41.
JAMA Soğancı AS, Orman A. The Influence of Polypropylene Fiber on High and Low Plasticity Clay. NEU Fen Muh Bil Der. 2024;6:178–187.
MLA Soğancı, Ali Sinan and Ali Orman. “The Influence of Polypropylene Fiber on High and Low Plasticity Clay”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 6, no. 1, 2024, pp. 178-87, doi:10.47112/neufmbd.2024.41.
Vancouver Soğancı AS, Orman A. The Influence of Polypropylene Fiber on High and Low Plasticity Clay. NEU Fen Muh Bil Der. 2024;6(1):178-87.


32206                   17157           17158