Research Article
BibTex RIS Cite

Effect of Fly Ash Replacement on Compressibility of Deep Mixing Columns

Year 2024, , 139 - 152, 30.04.2024
https://doi.org/10.47112/neufmbd.2024.38

Abstract

The unique aspect of this study is to determine the optimum injection parameters that will minimize the compression capacity of fly ash-containing deep mixing columns (DMC). In the study, a clayey soil was improved by wet mixing method. The effects of variables such as soil liquidity index, water/binder ratio, cement, superplasticizer and fly ash amounts on the compression properties of DMC were examined. The design of the experiments was made according to the Taguchi method. DMC samples were prepared according to the L16 orthogonal index table for 5 parameters and 4 levels. Consolidation experiments were performed on the samples kept in cure (28 and 56 days) and the change in the compression index, swelling index and void ratio of the sample was determined. At the end of the analyses, optimum values of the parameters (liquidity index of the soil = 0.4, water/binder ratio = 0.8, binder dosage = 425 kg/m3, superplasticizer ratio = 3%, fly ash ratio = 40%) were obtained. The results obtained show that by using 40% fly ash in DMC production, injection costs will also decrease at this rate. In addition, environmental damage will be minimized by increasing the use of fly ash, which is a waste product.

Project Number

Bu çalışma TÜBİTAK tarafından 217M946 numaralı proje ile desteklenmektedir. Bu çalışma doktora tezinden üretilmiştir.

References

  • S. Larsson, M. Dahlström, B. Nilsson, Uniformity of lime-cement columns for deep mixing: a field study, Proceedings of the Institution of Civil Engineers - Ground Improvement. 9 (2005), 1-15. doi:10.1680/grim.2005.9.1.1.
  • M. Kitazume, M. Terashi, The deep mixing method, CRC press, 2013.
  • EN 14679, Execution of special geotechnical works - Deep mixing, European Standard, 2005.
  • B.B. Broms, P. Boman, Lime stabilized column, içinde: 5th Asian Regional Conference on Soil Mech. and Found. Engineering, Indian Institute of Science, Bangalore, India, 1975: ss. 227-234.
  • T. Okamura, M. Terashi, Deep lime mixing method of stabilization for marine clays, içinde: 5th Asian Regional Conference on Soil Mech. and Found. Engineering, Indian Institute of Science, Bangalore, India, 1975: ss. 69-75.
  • J. Chu, S. Varaksin, U. Klotz, P. Mengé, Construction Processes, içinde: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 2009: ss. 3006-135. doi:10.3233/978-1-60750-031-5-3006
  • O. Helson, J. Eslami, A. Beaucour, A. Noumowe, P. Gotteland, Hydro-mechanical behaviour of soilcretes through a parametric laboratory study, Construction and Building Materials. 166 (2018), 657-667. doi:10.1016/j.conbuildmat.2018.01.177
  • P. Jamsawang, P. Voottipruex, P. Tanseng, P. Jongpradist, D.T. Bergado, Effectiveness of deep cement mixing walls with top-down construction for deep excavations in soft clay: case study and 3D simulation, Acta Geotechnica. 14 (2019), 225-246. doi:10.1007/s11440-018-0660-7
  • A. Hasheminezhad, H. Bahadori, Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns, Computers and Geotechnics. 110 (2019), 251-273. doi:10.1016/j.compgeo.2019.02.019
  • C. Phutthananon, P. Jongpradist, D. Dias, P. Jamsawang, Numerical study of the deformation performance and failure mechanisms of TDM pile-supported embankments, Transportation Geotechnics. 30 (2021), 100623. doi:10.1016/j.trgeo.2021.100623
  • C. Phutthananon, P. Jongpradist, P. Jongpradist, D. Dias, P. Jamsawang, D.T. Bergado, Performance-based design optimization of embankments resting on soft soil improved with T-shaped and conventional DCM columns, Acta Geotechnica. 16 (2021), 3301-3326. doi:10.1007/s11440-021-01258-x
  • D.T. Bergado, G.A. Lorenzo, Economical mixing method for cement deep mixing, içinde: Innovations in Grouting and Soil Improvement, 2005: ss. 1-10. doi: 10.1061/40783(162)12
  • G.A. Lorenzo, D.T. Bergado, Fundamental parameters of cement-admixed clay—new approach, Journal of Geotechnical and Geoenvironmental Engineering. 130 (2004), 1042-1050. doi:10.1061/(ASCE)1090-0241(2004)130:10(1042)
  • S. Horpibulsuk, N. Miura, T.S. Nagaraj, Clay–water/cement ratio identity for cement admixed soft clays, Journal of Geotechnical and Geoenvironmental Engineering. 131 (2005), 187-192. doi:10.1061/(ASCE)1090-0241(2005)131:2(187)
  • N. Miura, S. Horpibulsuk, T.S. Nagaraj, Engineering behavior of cement stabilized clay at high water content, Soils and Foundations. 41 (2001), 33-45. doi:10.3208/sandf.41.5_33
  • Y. Yenginar, İ. Özkan, Local site conditions and hydromechanical effects in service life of cantilever retaining walls, Engineering Failure Analysis. 153 (2023), 107536. doi:10.1016/j.engfailanal.2023.107536
  • Y. Yenginar, M. Olgun, Optimizing installation parameters of DM columns in clay using Taguchi method, Bulletin of Engineering Geology and the Environment. 82 (2023), 145. doi:10.1007/s10064-023-03168-6
  • Y. Yenginar, M. Olgun, Optimizing construction parameters of DMC in high plasticity soils, içinde: 8th Geotechnical Symposium, İstanbul, Turkey, 2019.
  • Y. Yenginar, A.A.A.M. Mobark, M. Olgun, Investigating the construction parameters of deep mixing columns in silty soils, International Advanced Researches and Engineering Journal. 5 (2021), 464-474. doi:10.35860/iarej.978978
  • Y. Yenginar, Derin karıştırma kolonlarının performansını etkileyen faktörlerin model deneylerle araştırılması, Doktora Tezi, Konya Teknik Üniversitesi, 2020.
  • M. Kitazume, M. Grisolia, E. Leder, I.P. Marzano, A.A.S. Correia, P.J. V. Oliveira, H. Åhnberg, M. Andersson, Applicability of molding procedures in laboratory mix tests for quality control and assurance of the deep mixing method, Soils and Foundations. 55 (2015), 761-777. doi:10.1016/j.sandf.2015.06.009
  • M.T.M. Zulkifley, T.F. Ng, J.K. Raj, R. Hashim, A.F.A. Bakar, S. Paramanthan, M.A. Ashraf, A review of the stabilization of tropical lowland peats, Bulletin of Engineering Geology and the Environment. 73 (2014), 733-746. doi:10.1007/s10064-013-0549-5
  • M. Kianimehr, P.T. Shourijeh, S.M. Binesh, A. Mohammadinia, A. Arulrajah, Utilization of recycled concrete aggregates for light-stabilization of clay soils, Construction and Building Materials. 227 (2019), 116792. doi:10.1016/j.conbuildmat.2019.116792
  • H. Mujtaba, T. Aziz, K. Farooq, N. Sivakugan, B.M. Das, Improvement in engineering properties of expansive soils using ground granulated blast furnace slag, Journal of the Geological Society of India. 92 (2018), 357-362. doi:10.1007/s12594-018-1019-2
  • Y. Verma, B. Mazumdar, P. Ghosh, Dataset on the electrical energy consumption and its conservation in the cement manufacturing industry, Data in Brief. 28 (2020) 104967. doi:10.1016/j.dib.2019.104967
  • M.S. Deepak, S. Rohini, B.S. Harini, G.B.G. Ananthi, Influence of fly-ash on the engineering characteristics of stabilised clay soil, Materials Today: Proceedings. 37 (2021), 2014-2018. doi:10.1016/j.matpr.2020.07.497
  • P. Jongpradist, N. Jumlongrach, Y. Sompote, S. Chucheepsakul, Influence of fly ash on unconfined compressive strength of cement-admixed clay at high water content Journal of Materials in Civil Engineering. 22 (2010), 49-58. doi:10.1061/ASCE0899-1561201022:149.
  • H.Y. Kek, Y. Pan, Y.C.H. Ng, F.H. Lee, An approach for modelling spatial variability in permeability of cement-admixed soil, Acta Geotechnica. 16 (2021), 4007-4026. doi:10.1007/s11440-021-01344-0
  • P. Hou, K. Wang, J. Qian, S. Kawashima, D. Kong, S.P. Shah, Effects of colloidal nanoSiO2 on fly ash hydration, Cement and Concrete Composites. 34 (2012), 1095-1103. doi:10.1016/j.cemconcomp.2012.06.013
  • Y. Yenginar, Investigation of factors affecting the performance of deep mixing columns by model experiments, PhD Thesis, Konya Technical University, 2020.
  • FHWA, Federal highway administration design manual: Deep mixing for embankment and foundation support, Report No. FHWA-HRT-13-046, Federal Highway Administration, Washington, DC., 2013.
  • ASTM D2487, Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), içinde: Book of Standards Volume: 04.08, ASTM International, West Conshohocken, PA, 2017. doi:10.1520/D2487-17E01
  • ASTM C618-23, Standard specification for coal ash and raw or calcined natural pozzolan for use in concrete, içinde: Book of Standards Volume: 04.02, ASTM International, West Conshohocken, PA, 2023.
  • G. Taguchi, S. Chowdhury, Y. Wu, Taguchi’s Quality Engineering Handbook, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004. doi:10.1002/9780470258354
  • G. Taguchi, S. Konishi, Taguchi methods orthogonal arrays and linear graphs: Tools for quality engineering, American Supplier Institute, 1987.
  • G. Taguchi, Introduction to quality engineering: Designing quality into products and processes, 4. bs, Asian Productivity Organization, Tokyo, 1988. doi:10.1002/qre.4680040216
  • G. Taguchi, E.A. Elsayed, T.C. Hsiang, Quality engineering in production systems, McGraw-Hill., New York, N.Y., 1989.
  • M. Topolnicki, In situ soil mixing, içinde: Ground improvement, 2013: ss. 377-378.
  • F. Zha, S. Liu, Y. Du, K. Cui, Behavior of expansive soils stabilized with fly ash, Natural Hazards. 47 (2008), 509-523. doi:10.1007/s11069-008-9236-4.
  • https://uk.chryso.com/p/6906/chryso-optima-100, CHRYSO®Optima 100, (2023).
  • ASTM D6910, Standard test method for Marsh funnel viscosity of construction slurries, içinde: Book of Standards Volume: 04.09, ASTM International, West Conshohocken, PA, 2019. doi:10.1520/D6910_D6910M-09.
  • H. Güllü, M.M.D. Al Nuaimi, A. Aytek, Rheological and strength performances of cold-bonded geopolymer made from limestone dust and bottom ash for grouting and deep mixing, Bulletin of Engineering Geology and the Environment. 80 (2021), 1103-1123. doi:10.1007/s10064-020-01998-2
  • M. Topolnicki, Design and execution practice of wet soil mixing in Poland, içinde: International Symposium on Deep Mixing & Admixture Stabilization, Okinawa, 2010: ss. 195-202.
  • Y. Gulgun, The effects of temperature on the characteristics of kaolinite and bentonite, Scientific Research and Essays. 6 (2011), 1928-1939. doi:10.5897/SRE10.727
  • ASTM D2435, Standard test methods for one-dimensional consolidation properties of soils using incremental loading, içinde: Book of Standards Volume: 04.08, ASTM International, West Conshohocken, PA, 2020. doi:10.1520/D2435_D2435M-11R20

Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi

Year 2024, , 139 - 152, 30.04.2024
https://doi.org/10.47112/neufmbd.2024.38

Abstract

Sunulan bu çalışmanın özgün tarafı uçucu kül katkılı derin karıştırma kolonlarının (DKK) sıkışma kapasitesini en aza indirecek optimum enjeksiyon parametrelerini belirlemektir. Çalışmada killi bir zemin ıslak karıştırma yöntemiyle iyileştirilmiştir. Zeminin likitlik indisi, su/bağlayıcı oranı, çimento oranı, süper akışkanlaştırıcı miktarı ve uçucu kül ikame oranı gibi değişkenlerin DKK’nın sıkışabilirlik özelliğine etkisi incelenmiştir. Deneylerin tasarımı Taguchi yöntemine göre yapılmıştır. 5 parametre ve 4 seviye için L16 ortogonal dizin tablosuna göre DKK numuneleri hazırlanmıştır. Kürde bekletilen (28 ve 56 gün) numunelerin konsolidasyon deneyleri yapılarak numunenin sıkışma indisi, kabarma indisi ve boşluk oranındaki değişim belirlenmiştir. Analizler sonunda parametrelerin optimum değerleri (zeminin likitlik indisi=0.4, su/bağlayıcı oranı=0.8, bağlayıcı dozajı=425 kg/m3, süper akışkanlaştırıcı oranı=%3, uçucu kül oranı=%40) elde edilmiştir. Elde edilen sonuçlar DKK imalatında %40 oranında uçucu kül kullanılması ile enjeksiyon maliyetlerinin de bu oranda azalacağını göstermektedir. Ayrıca atık bir ürün olan uçucu kül kullanımının artması ile çevresel zararlar en aza inecektir.

Supporting Institution

TÜBİTAK

Project Number

Bu çalışma TÜBİTAK tarafından 217M946 numaralı proje ile desteklenmektedir. Bu çalışma doktora tezinden üretilmiştir.

References

  • S. Larsson, M. Dahlström, B. Nilsson, Uniformity of lime-cement columns for deep mixing: a field study, Proceedings of the Institution of Civil Engineers - Ground Improvement. 9 (2005), 1-15. doi:10.1680/grim.2005.9.1.1.
  • M. Kitazume, M. Terashi, The deep mixing method, CRC press, 2013.
  • EN 14679, Execution of special geotechnical works - Deep mixing, European Standard, 2005.
  • B.B. Broms, P. Boman, Lime stabilized column, içinde: 5th Asian Regional Conference on Soil Mech. and Found. Engineering, Indian Institute of Science, Bangalore, India, 1975: ss. 227-234.
  • T. Okamura, M. Terashi, Deep lime mixing method of stabilization for marine clays, içinde: 5th Asian Regional Conference on Soil Mech. and Found. Engineering, Indian Institute of Science, Bangalore, India, 1975: ss. 69-75.
  • J. Chu, S. Varaksin, U. Klotz, P. Mengé, Construction Processes, içinde: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 2009: ss. 3006-135. doi:10.3233/978-1-60750-031-5-3006
  • O. Helson, J. Eslami, A. Beaucour, A. Noumowe, P. Gotteland, Hydro-mechanical behaviour of soilcretes through a parametric laboratory study, Construction and Building Materials. 166 (2018), 657-667. doi:10.1016/j.conbuildmat.2018.01.177
  • P. Jamsawang, P. Voottipruex, P. Tanseng, P. Jongpradist, D.T. Bergado, Effectiveness of deep cement mixing walls with top-down construction for deep excavations in soft clay: case study and 3D simulation, Acta Geotechnica. 14 (2019), 225-246. doi:10.1007/s11440-018-0660-7
  • A. Hasheminezhad, H. Bahadori, Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns, Computers and Geotechnics. 110 (2019), 251-273. doi:10.1016/j.compgeo.2019.02.019
  • C. Phutthananon, P. Jongpradist, D. Dias, P. Jamsawang, Numerical study of the deformation performance and failure mechanisms of TDM pile-supported embankments, Transportation Geotechnics. 30 (2021), 100623. doi:10.1016/j.trgeo.2021.100623
  • C. Phutthananon, P. Jongpradist, P. Jongpradist, D. Dias, P. Jamsawang, D.T. Bergado, Performance-based design optimization of embankments resting on soft soil improved with T-shaped and conventional DCM columns, Acta Geotechnica. 16 (2021), 3301-3326. doi:10.1007/s11440-021-01258-x
  • D.T. Bergado, G.A. Lorenzo, Economical mixing method for cement deep mixing, içinde: Innovations in Grouting and Soil Improvement, 2005: ss. 1-10. doi: 10.1061/40783(162)12
  • G.A. Lorenzo, D.T. Bergado, Fundamental parameters of cement-admixed clay—new approach, Journal of Geotechnical and Geoenvironmental Engineering. 130 (2004), 1042-1050. doi:10.1061/(ASCE)1090-0241(2004)130:10(1042)
  • S. Horpibulsuk, N. Miura, T.S. Nagaraj, Clay–water/cement ratio identity for cement admixed soft clays, Journal of Geotechnical and Geoenvironmental Engineering. 131 (2005), 187-192. doi:10.1061/(ASCE)1090-0241(2005)131:2(187)
  • N. Miura, S. Horpibulsuk, T.S. Nagaraj, Engineering behavior of cement stabilized clay at high water content, Soils and Foundations. 41 (2001), 33-45. doi:10.3208/sandf.41.5_33
  • Y. Yenginar, İ. Özkan, Local site conditions and hydromechanical effects in service life of cantilever retaining walls, Engineering Failure Analysis. 153 (2023), 107536. doi:10.1016/j.engfailanal.2023.107536
  • Y. Yenginar, M. Olgun, Optimizing installation parameters of DM columns in clay using Taguchi method, Bulletin of Engineering Geology and the Environment. 82 (2023), 145. doi:10.1007/s10064-023-03168-6
  • Y. Yenginar, M. Olgun, Optimizing construction parameters of DMC in high plasticity soils, içinde: 8th Geotechnical Symposium, İstanbul, Turkey, 2019.
  • Y. Yenginar, A.A.A.M. Mobark, M. Olgun, Investigating the construction parameters of deep mixing columns in silty soils, International Advanced Researches and Engineering Journal. 5 (2021), 464-474. doi:10.35860/iarej.978978
  • Y. Yenginar, Derin karıştırma kolonlarının performansını etkileyen faktörlerin model deneylerle araştırılması, Doktora Tezi, Konya Teknik Üniversitesi, 2020.
  • M. Kitazume, M. Grisolia, E. Leder, I.P. Marzano, A.A.S. Correia, P.J. V. Oliveira, H. Åhnberg, M. Andersson, Applicability of molding procedures in laboratory mix tests for quality control and assurance of the deep mixing method, Soils and Foundations. 55 (2015), 761-777. doi:10.1016/j.sandf.2015.06.009
  • M.T.M. Zulkifley, T.F. Ng, J.K. Raj, R. Hashim, A.F.A. Bakar, S. Paramanthan, M.A. Ashraf, A review of the stabilization of tropical lowland peats, Bulletin of Engineering Geology and the Environment. 73 (2014), 733-746. doi:10.1007/s10064-013-0549-5
  • M. Kianimehr, P.T. Shourijeh, S.M. Binesh, A. Mohammadinia, A. Arulrajah, Utilization of recycled concrete aggregates for light-stabilization of clay soils, Construction and Building Materials. 227 (2019), 116792. doi:10.1016/j.conbuildmat.2019.116792
  • H. Mujtaba, T. Aziz, K. Farooq, N. Sivakugan, B.M. Das, Improvement in engineering properties of expansive soils using ground granulated blast furnace slag, Journal of the Geological Society of India. 92 (2018), 357-362. doi:10.1007/s12594-018-1019-2
  • Y. Verma, B. Mazumdar, P. Ghosh, Dataset on the electrical energy consumption and its conservation in the cement manufacturing industry, Data in Brief. 28 (2020) 104967. doi:10.1016/j.dib.2019.104967
  • M.S. Deepak, S. Rohini, B.S. Harini, G.B.G. Ananthi, Influence of fly-ash on the engineering characteristics of stabilised clay soil, Materials Today: Proceedings. 37 (2021), 2014-2018. doi:10.1016/j.matpr.2020.07.497
  • P. Jongpradist, N. Jumlongrach, Y. Sompote, S. Chucheepsakul, Influence of fly ash on unconfined compressive strength of cement-admixed clay at high water content Journal of Materials in Civil Engineering. 22 (2010), 49-58. doi:10.1061/ASCE0899-1561201022:149.
  • H.Y. Kek, Y. Pan, Y.C.H. Ng, F.H. Lee, An approach for modelling spatial variability in permeability of cement-admixed soil, Acta Geotechnica. 16 (2021), 4007-4026. doi:10.1007/s11440-021-01344-0
  • P. Hou, K. Wang, J. Qian, S. Kawashima, D. Kong, S.P. Shah, Effects of colloidal nanoSiO2 on fly ash hydration, Cement and Concrete Composites. 34 (2012), 1095-1103. doi:10.1016/j.cemconcomp.2012.06.013
  • Y. Yenginar, Investigation of factors affecting the performance of deep mixing columns by model experiments, PhD Thesis, Konya Technical University, 2020.
  • FHWA, Federal highway administration design manual: Deep mixing for embankment and foundation support, Report No. FHWA-HRT-13-046, Federal Highway Administration, Washington, DC., 2013.
  • ASTM D2487, Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), içinde: Book of Standards Volume: 04.08, ASTM International, West Conshohocken, PA, 2017. doi:10.1520/D2487-17E01
  • ASTM C618-23, Standard specification for coal ash and raw or calcined natural pozzolan for use in concrete, içinde: Book of Standards Volume: 04.02, ASTM International, West Conshohocken, PA, 2023.
  • G. Taguchi, S. Chowdhury, Y. Wu, Taguchi’s Quality Engineering Handbook, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004. doi:10.1002/9780470258354
  • G. Taguchi, S. Konishi, Taguchi methods orthogonal arrays and linear graphs: Tools for quality engineering, American Supplier Institute, 1987.
  • G. Taguchi, Introduction to quality engineering: Designing quality into products and processes, 4. bs, Asian Productivity Organization, Tokyo, 1988. doi:10.1002/qre.4680040216
  • G. Taguchi, E.A. Elsayed, T.C. Hsiang, Quality engineering in production systems, McGraw-Hill., New York, N.Y., 1989.
  • M. Topolnicki, In situ soil mixing, içinde: Ground improvement, 2013: ss. 377-378.
  • F. Zha, S. Liu, Y. Du, K. Cui, Behavior of expansive soils stabilized with fly ash, Natural Hazards. 47 (2008), 509-523. doi:10.1007/s11069-008-9236-4.
  • https://uk.chryso.com/p/6906/chryso-optima-100, CHRYSO®Optima 100, (2023).
  • ASTM D6910, Standard test method for Marsh funnel viscosity of construction slurries, içinde: Book of Standards Volume: 04.09, ASTM International, West Conshohocken, PA, 2019. doi:10.1520/D6910_D6910M-09.
  • H. Güllü, M.M.D. Al Nuaimi, A. Aytek, Rheological and strength performances of cold-bonded geopolymer made from limestone dust and bottom ash for grouting and deep mixing, Bulletin of Engineering Geology and the Environment. 80 (2021), 1103-1123. doi:10.1007/s10064-020-01998-2
  • M. Topolnicki, Design and execution practice of wet soil mixing in Poland, içinde: International Symposium on Deep Mixing & Admixture Stabilization, Okinawa, 2010: ss. 195-202.
  • Y. Gulgun, The effects of temperature on the characteristics of kaolinite and bentonite, Scientific Research and Essays. 6 (2011), 1928-1939. doi:10.5897/SRE10.727
  • ASTM D2435, Standard test methods for one-dimensional consolidation properties of soils using incremental loading, içinde: Book of Standards Volume: 04.08, ASTM International, West Conshohocken, PA, 2020. doi:10.1520/D2435_D2435M-11R20
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering
Journal Section Articles
Authors

Yavuz Yenginar 0000-0002-6916-4068

Murat Olgun 0000-0001-7856-8227

Project Number Bu çalışma TÜBİTAK tarafından 217M946 numaralı proje ile desteklenmektedir. Bu çalışma doktora tezinden üretilmiştir.
Publication Date April 30, 2024
Submission Date November 14, 2023
Acceptance Date February 8, 2024
Published in Issue Year 2024

Cite

APA Yenginar, Y., & Olgun, M. (2024). Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(1), 139-152. https://doi.org/10.47112/neufmbd.2024.38
AMA Yenginar Y, Olgun M. Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi. NEU Fen Muh Bil Der. April 2024;6(1):139-152. doi:10.47112/neufmbd.2024.38
Chicago Yenginar, Yavuz, and Murat Olgun. “Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, no. 1 (April 2024): 139-52. https://doi.org/10.47112/neufmbd.2024.38.
EndNote Yenginar Y, Olgun M (April 1, 2024) Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 1 139–152.
IEEE Y. Yenginar and M. Olgun, “Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi”, NEU Fen Muh Bil Der, vol. 6, no. 1, pp. 139–152, 2024, doi: 10.47112/neufmbd.2024.38.
ISNAD Yenginar, Yavuz - Olgun, Murat. “Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/1 (April 2024), 139-152. https://doi.org/10.47112/neufmbd.2024.38.
JAMA Yenginar Y, Olgun M. Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi. NEU Fen Muh Bil Der. 2024;6:139–152.
MLA Yenginar, Yavuz and Murat Olgun. “Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 6, no. 1, 2024, pp. 139-52, doi:10.47112/neufmbd.2024.38.
Vancouver Yenginar Y, Olgun M. Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi. NEU Fen Muh Bil Der. 2024;6(1):139-52.


32206                   17157           17158