Research Article
BibTex RIS Cite

3 Serbestlik Dereceli Sistemin Yapay Zekâ Tabanlı LQR ve PID Kontrolcü Tasarımı

Year 2024, Volume: 6 Issue: 3, 457 - 467, 31.12.2024
https://doi.org/10.47112/neufmbd.2024.58

Abstract

Bu çalışmada 3 serbestlik dereceli eksik eyleyicili bir sistemin konum kontrolü gerçekleştirilmiştir. Geliştirilen yaklaşım ikili sarkaç tipi tepe vincinin üzerinde denenmiştir. İlk olarak sistemin matematiksel modeli doğrusal olmayan dinamikler dikkate alınarak Euler-Lagrange metodu ile elde edilmiştir. Benzetim çalışmalarında PID ve LQR kontrolcüleri kullanıldığından doğrusal olmayan model sistemin denge noktası etrafında doğrusallaştırılmıştır. Elde edilen doğrusal model kullanılarak PID ve LQR kontrolcülerinin parametreleri Yapay Arı Kolonisi Algoritması ile ayarlanmıştır. Optimizasyon sürecinde sistemin üç serbestliğindeki hatanın minimize edilmesi için geleneksel uygunluk fonksiyonlarından Zamansal mutlak hataların toplamı (Integral Time Absulate Error) fonksiyonu seçilmiştir. Ayrıca arabanın hassas hareketini sağlamak için amaç fonksiyonu birim basamak cevaplarını içerecek şekilde iyileştirilmiştir. Kontrolcü performansları benzetim ortamında yapılan çalışmalar ile denenmiştir. Sonuçlar tablo ve grafikler halinde sunulmuştur. Önerilen yaklaşım çok serbestlik dereceli ve eksik eyleyici sistemlerin kontrolünde kullanılabilir.

References

  • R. Mar, A. Goyal, V. Nguyen, T. Yang, W. Singhose, Combined input shaping and feedback control for double pendulum systems, Mechanical Systems and Signal Processing. 85 (2017), 267–277. doi: 10.1016/j.ymssp.2016.08.012
  • X. Xie, J. Huang, Z. Liang, Vibration reduction for flexible systems by command smoothing, Mechanical Systems and Signal Processing. 39(1-2) (2013), 461-470. doi: 10.1016/j.ymssp.2013.02.021
  • D. Fujioka, W. Singhose, Input-Shaped Model Reference Control of a Nonlinear Time-Varying Double-Pendulum Crane, içinde: 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 2015, 1–6. doi: 10.1109/ASCC.2015.7244565
  • S. Garrido, M. Abderrahim, A. Gimenez, R. Diez, C. Balaguer, Anti-Swinging input shaping control of an automatic construction crane, IEEE Transactions on Automation Science and Engineering. 5 (3) (2008), 549–557. doi:10.1109/TASE.2007.909631
  • H.I. Jaafar, Z. Mohamed, M.A. Shamsudin, N.A. Mohd Subha, L. Ramli, A.M. Abdullahi, Model reference command shaping for vibration control of multimode flexible systems with application to a double-pendulum overhead crane, Mechanical Systems and Signal Processing. 115 (2019), 677–695. doi: 10.1016/j.ymssp.2018.06.005
  • H.I. Jaafar, N.M. Ali, Z. Mohamed, N.A. Selamat, A.F.Z. Abidin, J.J. Jamian, A.M. Kassim, Optimal Performance of a Nonlinear Gantry Crane System Via Priority-Based Fitness Scheme in Binary PSO Algorithm, içinde: Volume 53: 5th International Conference on Mechatronics (ICOM'13), 2013, Kuala Lumpur, Malaysia, 012011. doi:10.1088/1757-899X/53/1/012011
  • M.J. Maghsoudi, Z. Mohamed, A.R. Husain, M.O. Tokhi, An optimal performance control scheme for a 3D crane, Mechanical Systems and Signal Processing. 66-67 (2016), 756–768. doi: 10.1016/j.ymssp.2015.05.020
  • M.I. Solihin, Wahyudi, M.A.S. Kamal, A. Legowo, Objective Function Selection Of GA-Based PID Control Optimization for Automatic Gantry Crane, içinde: 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, 883–887. doi: 10.1109/ICCCE.2008.4580732
  • A. Alhassan, K.A. Danapalasingam, M. Shehu, A.M. Abdullahi, A. Shehu, Closed-loop schemes for position and sway control of a gantry crane system, International Journal of Simulation: Systems, Science and Technology. 17 (2016), 1-8. doi: 10.5013/IJSSST.a.17.32.28
  • A.O. Faouri, P. Kasap, Maximum likelihood estimation for the Nakagami distribution using particle swarm optimization algorithm with applications, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5(2) (2023), 169-178. doi: 10.47112/neufmbd.2023.19
  • A. Ünlü, İ. İlhan, A novel hybrid gray wolf optimization algorithm with harmony search to solve multi-level image thresholding problem, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5(2) (2023), 190-204. doi: 10.47112/neufmbd.2023.21
  • S. Bandong, M. R. Miransyahputra, Y. Setiaji, Y. Y. Nazaruddin, P. I. Siregar and E. Joelianto, Optimization of Gantry Crane PID Controller Based on PSO, SFS, and FPA, içinde: 2021 60th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Tokyo, Japan, 2021, 338-343.
  • H.I. Jaafar, Z. Mohamed, PSO-Tuned PID Controller for A Nonlinear Double-Pendulum Crane System, içinde: Volume 752: M. Mohamed Ali, H. Wahid, N. Mohd Subha, S. Sahlan, M. Md. Yunus, A. Wahap, (Ed.) AsiaSim 2017 Modeling, Design and Simulation of Systems, Springer, Singapore, 2017: s. 203–215. doi: 10.1007/978-981-10-6502-6_18
  • M. I. Solihin, Wahyudi, M. A. S. Kamal and A. Legowo, Objective Function Selection of GA-Based PID Control Optimization for Automatic Gantry Crane, içinde: 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, 883-887. doi: 10.1109/ICCCE.2008.4580732
  • Ü. Önen, A. Çakan, Anti-Swing control of an overhead crane by using genetic algorithm based LQR, International Journal of Engineering and Computer Science. 6(6) (2017), 21612-21616. doi: 10.18535/ijecs/v6i6.12
  • K.T. Mohamed, M.H. Abdel-razak, E.H. Haraz, A.A. Ata, Fine tuning of a PID controller with inlet derivative filter using pareto solution for gantry crane systems, Alexandria Engineering Journal. 61(9) (2022), 6659-6673. doi: 10.1016/j.aej.2021.12.017
  • H. W. Comma, Adaptive PID Control Design Based on Generalized Predictive Control (GPC), içinde: Volume 2: Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, 2004: s. 1685-1690. doi: 10.1109/CCA.2004.1387619
  • B. Yang, Z.X. Liu, H.K. Liu, Y. Li, S. Lin, A GPC-based multi-variable PID control algorithm and its application in anti-swing control and accurate positioning control for bridge cranes, International Journal of Control, Automation and Systems. 18 (2020), 2522–2533. doi: 10.1007/s12555-019-0400-2
  • M.I. Solihin, Wahyudi, A. Legowo, Fuzzy-Tuned PID anti-swing control of automatic gantry crane, Journal of Vibration and Control. 16(1) (2010), 127–145. doi:10.1177/1077546309103421
  • H. Shi, G. Li, X. Ma, J. Sun, Research on nonlinear coupling anti-swing control method of double pendulum gantry crane based on improved energy, Symmetry. 11(12) (2019), 1511. doi:10.3390/sym11121511
  • R. Ramirez-Juarez, M. Ramírez-Neria, A. Luviano-Juárez, Tracking Trajectory Control of a Double Pendulum Gantry Crane Using ADRC Approach, içinde: H.A. Moreno, I.G. Carrera, R.A. Ramírez-Mendoza, J. Baca, I.A. Banfield (Eds.), Advances in Automation and Robotics Research. LACAR 2021. Lecture Notes in Networks and Systems, Springer, Cham, 2022: s. 92–100. doi:10.1007/978-3-030-90033-5_11
  • D. Gutiérrez-Oribio, Á. Mercado-Uribe, J.A. Moreno, L. Fridman, Joint swing-up and stabilization of the reaction wheel pendulum using discontinuous integral algorithm, Nonlinear Analysis: Hybrid Systems. 41 (2021), 101042. doi:10.1016/j.nahs.2021.101042
  • Y. Zhao, X. Wu, F. Li, Y. Zhang, Positioning and swing elimination control of the overhead crane system with double-pendulum dynamics, Journal of Vibration Engineering & Technologies. 12 (2024), 971–978. doi:10.1007/s42417-023-00887-8
  • M. Zhang, X. Ma, X. Rong, X. Tian, Y. Li, Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances, Mechanical Systems and Signal Processing. 76–77 (2016), 15–32. doi:10.1016/J.YMSSP.2016.02.013
  • D. Karaboga, An Idea Based On Honey Bee Swarm For Numerical Optimization, Technical Report-tr06, Computer Engineering Department, Engineering Faculty Erciyes University, 2005.
  • H.H. Bilgic, M.A. Sen, M. Kalyoncu, Tuning of LQR controller for an experimental inverted pendulum system based on the bees algorithm, Journal of Vibroengineering. 18(6) (2016), 3684-3694. doi: 10.21595/jve.2016.16787
  • K. Vanchinathan, N. Selvaganesan, Adaptive fractional order PID controller tuning for brushless dc motor using artificial bee colony algorithm. Results in Control and Optimization. 4 (2021), 100032. doi: 10.1016/j.rico.2021.100032
  • D. L. Zhang, Y.-G. Tang, X.-P. Guan, Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm, Acta Automatica Sinica. 40(5) (2014), 973-979. doi: 10.1016/S1874-1029(14)60010-0
  • Z.-L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Transactions on Energy Conversion. 19 (2) (2004), 384-391. doi: 10.1109/TEC.2003.821821

Artificial Intelligence based LQR and PID Controller Design of 3 Degree of Freedom System

Year 2024, Volume: 6 Issue: 3, 457 - 467, 31.12.2024
https://doi.org/10.47112/neufmbd.2024.58

Abstract

In this study, the position control of a 3 DoF underactuated system is carried out. The developed approach is tested on a double pendulum overhead crane. Considering the nonlinear dynamics of the system, its mathematical model is first obtained by Euler-Lagrange model. Then, since PID and LQR controllers are used in the simulations, the nonlinear model is linearized around the equilibrium point of the system. Using the linear model, the parameters of LQR and PID controllers are tuned by Artificial Bee Colony Algorithm. In the optimization process, the Integral Time Absolute Error function is chosen from traditional fitness functions to minimize the error in each single-degree-of-freedom joint of the system. Additionally, to ensure the precise movement of the car, the objective function is improved in a way to include unit step response characteristics. The control performance is evaluated in the simulations. The results are presented in tables and graphs. The proposed approach can be used to control multi-degree of freedom underactuated systems.

References

  • R. Mar, A. Goyal, V. Nguyen, T. Yang, W. Singhose, Combined input shaping and feedback control for double pendulum systems, Mechanical Systems and Signal Processing. 85 (2017), 267–277. doi: 10.1016/j.ymssp.2016.08.012
  • X. Xie, J. Huang, Z. Liang, Vibration reduction for flexible systems by command smoothing, Mechanical Systems and Signal Processing. 39(1-2) (2013), 461-470. doi: 10.1016/j.ymssp.2013.02.021
  • D. Fujioka, W. Singhose, Input-Shaped Model Reference Control of a Nonlinear Time-Varying Double-Pendulum Crane, içinde: 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 2015, 1–6. doi: 10.1109/ASCC.2015.7244565
  • S. Garrido, M. Abderrahim, A. Gimenez, R. Diez, C. Balaguer, Anti-Swinging input shaping control of an automatic construction crane, IEEE Transactions on Automation Science and Engineering. 5 (3) (2008), 549–557. doi:10.1109/TASE.2007.909631
  • H.I. Jaafar, Z. Mohamed, M.A. Shamsudin, N.A. Mohd Subha, L. Ramli, A.M. Abdullahi, Model reference command shaping for vibration control of multimode flexible systems with application to a double-pendulum overhead crane, Mechanical Systems and Signal Processing. 115 (2019), 677–695. doi: 10.1016/j.ymssp.2018.06.005
  • H.I. Jaafar, N.M. Ali, Z. Mohamed, N.A. Selamat, A.F.Z. Abidin, J.J. Jamian, A.M. Kassim, Optimal Performance of a Nonlinear Gantry Crane System Via Priority-Based Fitness Scheme in Binary PSO Algorithm, içinde: Volume 53: 5th International Conference on Mechatronics (ICOM'13), 2013, Kuala Lumpur, Malaysia, 012011. doi:10.1088/1757-899X/53/1/012011
  • M.J. Maghsoudi, Z. Mohamed, A.R. Husain, M.O. Tokhi, An optimal performance control scheme for a 3D crane, Mechanical Systems and Signal Processing. 66-67 (2016), 756–768. doi: 10.1016/j.ymssp.2015.05.020
  • M.I. Solihin, Wahyudi, M.A.S. Kamal, A. Legowo, Objective Function Selection Of GA-Based PID Control Optimization for Automatic Gantry Crane, içinde: 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, 883–887. doi: 10.1109/ICCCE.2008.4580732
  • A. Alhassan, K.A. Danapalasingam, M. Shehu, A.M. Abdullahi, A. Shehu, Closed-loop schemes for position and sway control of a gantry crane system, International Journal of Simulation: Systems, Science and Technology. 17 (2016), 1-8. doi: 10.5013/IJSSST.a.17.32.28
  • A.O. Faouri, P. Kasap, Maximum likelihood estimation for the Nakagami distribution using particle swarm optimization algorithm with applications, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5(2) (2023), 169-178. doi: 10.47112/neufmbd.2023.19
  • A. Ünlü, İ. İlhan, A novel hybrid gray wolf optimization algorithm with harmony search to solve multi-level image thresholding problem, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5(2) (2023), 190-204. doi: 10.47112/neufmbd.2023.21
  • S. Bandong, M. R. Miransyahputra, Y. Setiaji, Y. Y. Nazaruddin, P. I. Siregar and E. Joelianto, Optimization of Gantry Crane PID Controller Based on PSO, SFS, and FPA, içinde: 2021 60th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Tokyo, Japan, 2021, 338-343.
  • H.I. Jaafar, Z. Mohamed, PSO-Tuned PID Controller for A Nonlinear Double-Pendulum Crane System, içinde: Volume 752: M. Mohamed Ali, H. Wahid, N. Mohd Subha, S. Sahlan, M. Md. Yunus, A. Wahap, (Ed.) AsiaSim 2017 Modeling, Design and Simulation of Systems, Springer, Singapore, 2017: s. 203–215. doi: 10.1007/978-981-10-6502-6_18
  • M. I. Solihin, Wahyudi, M. A. S. Kamal and A. Legowo, Objective Function Selection of GA-Based PID Control Optimization for Automatic Gantry Crane, içinde: 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, 883-887. doi: 10.1109/ICCCE.2008.4580732
  • Ü. Önen, A. Çakan, Anti-Swing control of an overhead crane by using genetic algorithm based LQR, International Journal of Engineering and Computer Science. 6(6) (2017), 21612-21616. doi: 10.18535/ijecs/v6i6.12
  • K.T. Mohamed, M.H. Abdel-razak, E.H. Haraz, A.A. Ata, Fine tuning of a PID controller with inlet derivative filter using pareto solution for gantry crane systems, Alexandria Engineering Journal. 61(9) (2022), 6659-6673. doi: 10.1016/j.aej.2021.12.017
  • H. W. Comma, Adaptive PID Control Design Based on Generalized Predictive Control (GPC), içinde: Volume 2: Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, 2004: s. 1685-1690. doi: 10.1109/CCA.2004.1387619
  • B. Yang, Z.X. Liu, H.K. Liu, Y. Li, S. Lin, A GPC-based multi-variable PID control algorithm and its application in anti-swing control and accurate positioning control for bridge cranes, International Journal of Control, Automation and Systems. 18 (2020), 2522–2533. doi: 10.1007/s12555-019-0400-2
  • M.I. Solihin, Wahyudi, A. Legowo, Fuzzy-Tuned PID anti-swing control of automatic gantry crane, Journal of Vibration and Control. 16(1) (2010), 127–145. doi:10.1177/1077546309103421
  • H. Shi, G. Li, X. Ma, J. Sun, Research on nonlinear coupling anti-swing control method of double pendulum gantry crane based on improved energy, Symmetry. 11(12) (2019), 1511. doi:10.3390/sym11121511
  • R. Ramirez-Juarez, M. Ramírez-Neria, A. Luviano-Juárez, Tracking Trajectory Control of a Double Pendulum Gantry Crane Using ADRC Approach, içinde: H.A. Moreno, I.G. Carrera, R.A. Ramírez-Mendoza, J. Baca, I.A. Banfield (Eds.), Advances in Automation and Robotics Research. LACAR 2021. Lecture Notes in Networks and Systems, Springer, Cham, 2022: s. 92–100. doi:10.1007/978-3-030-90033-5_11
  • D. Gutiérrez-Oribio, Á. Mercado-Uribe, J.A. Moreno, L. Fridman, Joint swing-up and stabilization of the reaction wheel pendulum using discontinuous integral algorithm, Nonlinear Analysis: Hybrid Systems. 41 (2021), 101042. doi:10.1016/j.nahs.2021.101042
  • Y. Zhao, X. Wu, F. Li, Y. Zhang, Positioning and swing elimination control of the overhead crane system with double-pendulum dynamics, Journal of Vibration Engineering & Technologies. 12 (2024), 971–978. doi:10.1007/s42417-023-00887-8
  • M. Zhang, X. Ma, X. Rong, X. Tian, Y. Li, Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances, Mechanical Systems and Signal Processing. 76–77 (2016), 15–32. doi:10.1016/J.YMSSP.2016.02.013
  • D. Karaboga, An Idea Based On Honey Bee Swarm For Numerical Optimization, Technical Report-tr06, Computer Engineering Department, Engineering Faculty Erciyes University, 2005.
  • H.H. Bilgic, M.A. Sen, M. Kalyoncu, Tuning of LQR controller for an experimental inverted pendulum system based on the bees algorithm, Journal of Vibroengineering. 18(6) (2016), 3684-3694. doi: 10.21595/jve.2016.16787
  • K. Vanchinathan, N. Selvaganesan, Adaptive fractional order PID controller tuning for brushless dc motor using artificial bee colony algorithm. Results in Control and Optimization. 4 (2021), 100032. doi: 10.1016/j.rico.2021.100032
  • D. L. Zhang, Y.-G. Tang, X.-P. Guan, Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm, Acta Automatica Sinica. 40(5) (2014), 973-979. doi: 10.1016/S1874-1029(14)60010-0
  • Z.-L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Transactions on Energy Conversion. 19 (2) (2004), 384-391. doi: 10.1109/TEC.2003.821821
There are 29 citations in total.

Details

Primary Language English
Subjects Control Theoryand Applications, Machine Theory and Dynamics
Journal Section Articles
Authors

Engin Hasan Çopur 0000-0003-0837-1255

Hasan Hüseyin Bilgiç 0000-0001-6006-8056

Tarık Ünler 0000-0002-2658-1902

Early Pub Date December 8, 2024
Publication Date December 31, 2024
Submission Date February 16, 2024
Acceptance Date May 28, 2024
Published in Issue Year 2024 Volume: 6 Issue: 3

Cite

APA Çopur, E. H., Bilgiç, H. H., & Ünler, T. (2024). Artificial Intelligence based LQR and PID Controller Design of 3 Degree of Freedom System. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(3), 457-467. https://doi.org/10.47112/neufmbd.2024.58
AMA Çopur EH, Bilgiç HH, Ünler T. Artificial Intelligence based LQR and PID Controller Design of 3 Degree of Freedom System. NEJSE. December 2024;6(3):457-467. doi:10.47112/neufmbd.2024.58
Chicago Çopur, Engin Hasan, Hasan Hüseyin Bilgiç, and Tarık Ünler. “Artificial Intelligence Based LQR and PID Controller Design of 3 Degree of Freedom System”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, no. 3 (December 2024): 457-67. https://doi.org/10.47112/neufmbd.2024.58.
EndNote Çopur EH, Bilgiç HH, Ünler T (December 1, 2024) Artificial Intelligence based LQR and PID Controller Design of 3 Degree of Freedom System. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 3 457–467.
IEEE E. H. Çopur, H. H. Bilgiç, and T. Ünler, “Artificial Intelligence based LQR and PID Controller Design of 3 Degree of Freedom System”, NEJSE, vol. 6, no. 3, pp. 457–467, 2024, doi: 10.47112/neufmbd.2024.58.
ISNAD Çopur, Engin Hasan et al. “Artificial Intelligence Based LQR and PID Controller Design of 3 Degree of Freedom System”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/3 (December 2024), 457-467. https://doi.org/10.47112/neufmbd.2024.58.
JAMA Çopur EH, Bilgiç HH, Ünler T. Artificial Intelligence based LQR and PID Controller Design of 3 Degree of Freedom System. NEJSE. 2024;6:457–467.
MLA Çopur, Engin Hasan et al. “Artificial Intelligence Based LQR and PID Controller Design of 3 Degree of Freedom System”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 6, no. 3, 2024, pp. 457-6, doi:10.47112/neufmbd.2024.58.
Vancouver Çopur EH, Bilgiç HH, Ünler T. Artificial Intelligence based LQR and PID Controller Design of 3 Degree of Freedom System. NEJSE. 2024;6(3):457-6.


32206                   17157           17158