Research Article
BibTex RIS Cite

Semptomatik ve Asemptomatik Bulaşmaların Etkisi ile COVID-19 Salgınının Matematiksel Modelinin Analizi

Year 2024, Volume: 6 Issue: 3, 543 - 556, 31.12.2024
https://doi.org/10.47112/neufmbd.2024.64

Abstract

Bu çalışma, COVID-19 salgın sürecini ifade eden ayrık zamanlı bir SIR modelinin kararlılığını ve flip çatallanmasını ele almaktadır. Aşının etkisini dikkate alan model, hastalığın bulaşmasında semptomatik bireylerin yanı sıra asemptomatik bireylerin de etkisini içerir. Denge çözümleri belirli parametrik koşullar altında elde edilir. Daha sonra bu denge çözümlerinin lokal kararlılıkları araştırılır. Pozitif iç denge çözümü için çatallanmanın varlığı belirlenir.

References

  • W. H. Hamer, Epidemic disease in England-the evidence of variability and of persistence of type, Lancet. 1 (1906), 733-739. doi:10.1016/S0140-6736(01)80187-2
  • W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London Series A. 115 (1927), 700-721. doi:10.1098/rspa.1927.0118
  • W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Part II, The problem of endemicity, Proceedings of the Royal Society of London Series A. 138 (1932), 55-83. doi:10.1098/rspa.1932.0171
  • W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics, Part III, Further studies of the problem of Endemicity, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 141(1933), 94-122. doi:10.1098/rspa.1933.0106
  • D. Wu, T. Wu, Q. Liu, Z. Yang, The SARS-CoV-2 outbreak: What we know, International Journal of Infectious Diseases. 94 (2020), 44–48. doi:10.1016/j.ijid.2020.03.004
  • B. Hu, H. Guo, P. Zhou, Z.L. Shi, Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology. 19 (2020), 141–145. doi:10.1038/s41579-020-00459-7
  • H. Nishiura et al., Estimation of the asymptomatic ratio of novel coronavirus infections (covid-19), International Journal of Infectious Diseases. 94(2020), 154-155. doi:10.1016/j.ijid.2020.03.020
  • S. Lee, T. Kim, E. Lee, C. Lee, H. Kim, H. Rhee, et al., Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA International Medicine. 180 (11) (2020), 1447-1452. doi:10.1001/jamainternmed.2020.3862
  • F. Bahadır, F.S. Balık., H.S. Yalçınkaya, The Impact of COVID-19 on the financial structure of the construction industry in Turkey, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 173-188. doi:10.47112/neufmbd.2023.17
  • M. Akat, K. Karatas, Psychological effects of COVID-19 pandemic on society and its reflections on education, Turkish Studies. 15(4) (2020) 1-13. https://dx.doi.org/10.7827/TurkishStudies.44336
  • J. Lamwong, N. Wongvanich, I.M. Tang, P. Pongsumpun, Optimal control strategy of a mathematical model for the fifth wave of COVID-19 outbreak (Omicron) in Thailand, Mathematics. 12(1) (2024), 14. doi:10.3390/math12010014
  • O.A. Gumus, A.G.M Selvam, R. Janagaraj, Dynamics of the mathematical model related to COVID-19 pandemic with treatment, Thai Journal of Mathematics. 20 (2022), 957–970.
  • G.A. Muñoz-Fernández, J.M. Seoane, J.B. Seoane-Sepúlveda, A SIR-type model describing the successive waves of COVID-19, Chaos, Solitons & Fractals. 144 (2021), 110682. doi:10.1016/j.chaos.2021.110682
  • A. Olivares, E. Staffetti, Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy, Chaos, Solitons & Fractals. 146 (2021), 110895. doi:10.1016/j.chaos.2021.110895
  • K. Özdemir, Ö. Güngör, SWAT model on Filyos creek basin, Necmettin Erbakan University Journal of Science and Engineering. 1(2) (2019), 90-102.
  • Y. Asar, Performance of A new bias corrected estimator in beta regression model: A Monte Carlo study, Necmettin Erbakan University Journal of Science and Engineering. 5 (2)(2023), 75-87. doi:10.47112/neufmbd.2023.11
  • B. Gökçe, O. B. Özden, Determination of distortions by finite element analysis using the Goldak model in a welded joint structure, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 53-64. doi:10.47112/neufmbd.2023.9
  • E. Madenci, Contribution of micro-mechanical models to static analysis of functionally graded material plates, Necmettin Erbakan University Journal of Science and Engineering. 5(1) (2023) 23 - 37.
  • Y.C. Chen, P.E. Lu, C.S. Chang, T.H. Liu, A time-dependent SIR model for COVID19 with undetectable infected persons, IEEE Transactions on Network Science and Engineering. 7(4) (2020), 3279-3294. doi:10.1109/TNSE.2020.3024723
  • X. Li, W. Wang, A discrete epidemic model with stage structure, Chaos, Solitons & Fractals. 26 (2005), 947–958. doi:10.1016/j.chaos.2005.01.063
  • Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model. Mathematics and Computers in Simulation. 97(2014), 80-93. doi:10.1016/j.matcom.2013.08.008
  • Z. Eskandari, J. Alidousti, Stability and codimension 2 bifurcations of a discrete time SIR model, Journal of the Franklin Institute. 357(2020), 10937–10959. doi:10.1016/j.jfranklin.2020.08.040
  • Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 112, Springer, New-York, 2013. doi:10.1007/978-1-4757-3978-7
  • S. Kapçak, Discrete dynamical systems with SageMath, The Electronic Journal of Mathematics & Technology. 12(2) (2018), 292-308.

Analyzing a Mathematical Model of the COVID-19 Pandemic with the Impact Symptomatic and Asymptomatic Transmissions

Year 2024, Volume: 6 Issue: 3, 543 - 556, 31.12.2024
https://doi.org/10.47112/neufmbd.2024.64

Abstract

This study addresses the stability and flip bifurcation of a discrete-time SIR model expressing the COVID-19 pandemic. The model considers the effect of the vaccine, asymptomatic individuals, as well as symptomatic individuals in the transmission of the disease. Equilibrium solutions are obtained under certain parametric conditions. Then, the local stabilities of these equilibrium solutions are investigated. The existence of bifurcation is determined for the positive interior equilibrium solution.

References

  • W. H. Hamer, Epidemic disease in England-the evidence of variability and of persistence of type, Lancet. 1 (1906), 733-739. doi:10.1016/S0140-6736(01)80187-2
  • W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London Series A. 115 (1927), 700-721. doi:10.1098/rspa.1927.0118
  • W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Part II, The problem of endemicity, Proceedings of the Royal Society of London Series A. 138 (1932), 55-83. doi:10.1098/rspa.1932.0171
  • W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics, Part III, Further studies of the problem of Endemicity, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 141(1933), 94-122. doi:10.1098/rspa.1933.0106
  • D. Wu, T. Wu, Q. Liu, Z. Yang, The SARS-CoV-2 outbreak: What we know, International Journal of Infectious Diseases. 94 (2020), 44–48. doi:10.1016/j.ijid.2020.03.004
  • B. Hu, H. Guo, P. Zhou, Z.L. Shi, Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology. 19 (2020), 141–145. doi:10.1038/s41579-020-00459-7
  • H. Nishiura et al., Estimation of the asymptomatic ratio of novel coronavirus infections (covid-19), International Journal of Infectious Diseases. 94(2020), 154-155. doi:10.1016/j.ijid.2020.03.020
  • S. Lee, T. Kim, E. Lee, C. Lee, H. Kim, H. Rhee, et al., Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA International Medicine. 180 (11) (2020), 1447-1452. doi:10.1001/jamainternmed.2020.3862
  • F. Bahadır, F.S. Balık., H.S. Yalçınkaya, The Impact of COVID-19 on the financial structure of the construction industry in Turkey, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 173-188. doi:10.47112/neufmbd.2023.17
  • M. Akat, K. Karatas, Psychological effects of COVID-19 pandemic on society and its reflections on education, Turkish Studies. 15(4) (2020) 1-13. https://dx.doi.org/10.7827/TurkishStudies.44336
  • J. Lamwong, N. Wongvanich, I.M. Tang, P. Pongsumpun, Optimal control strategy of a mathematical model for the fifth wave of COVID-19 outbreak (Omicron) in Thailand, Mathematics. 12(1) (2024), 14. doi:10.3390/math12010014
  • O.A. Gumus, A.G.M Selvam, R. Janagaraj, Dynamics of the mathematical model related to COVID-19 pandemic with treatment, Thai Journal of Mathematics. 20 (2022), 957–970.
  • G.A. Muñoz-Fernández, J.M. Seoane, J.B. Seoane-Sepúlveda, A SIR-type model describing the successive waves of COVID-19, Chaos, Solitons & Fractals. 144 (2021), 110682. doi:10.1016/j.chaos.2021.110682
  • A. Olivares, E. Staffetti, Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy, Chaos, Solitons & Fractals. 146 (2021), 110895. doi:10.1016/j.chaos.2021.110895
  • K. Özdemir, Ö. Güngör, SWAT model on Filyos creek basin, Necmettin Erbakan University Journal of Science and Engineering. 1(2) (2019), 90-102.
  • Y. Asar, Performance of A new bias corrected estimator in beta regression model: A Monte Carlo study, Necmettin Erbakan University Journal of Science and Engineering. 5 (2)(2023), 75-87. doi:10.47112/neufmbd.2023.11
  • B. Gökçe, O. B. Özden, Determination of distortions by finite element analysis using the Goldak model in a welded joint structure, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 53-64. doi:10.47112/neufmbd.2023.9
  • E. Madenci, Contribution of micro-mechanical models to static analysis of functionally graded material plates, Necmettin Erbakan University Journal of Science and Engineering. 5(1) (2023) 23 - 37.
  • Y.C. Chen, P.E. Lu, C.S. Chang, T.H. Liu, A time-dependent SIR model for COVID19 with undetectable infected persons, IEEE Transactions on Network Science and Engineering. 7(4) (2020), 3279-3294. doi:10.1109/TNSE.2020.3024723
  • X. Li, W. Wang, A discrete epidemic model with stage structure, Chaos, Solitons & Fractals. 26 (2005), 947–958. doi:10.1016/j.chaos.2005.01.063
  • Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model. Mathematics and Computers in Simulation. 97(2014), 80-93. doi:10.1016/j.matcom.2013.08.008
  • Z. Eskandari, J. Alidousti, Stability and codimension 2 bifurcations of a discrete time SIR model, Journal of the Franklin Institute. 357(2020), 10937–10959. doi:10.1016/j.jfranklin.2020.08.040
  • Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 112, Springer, New-York, 2013. doi:10.1007/978-1-4757-3978-7
  • S. Kapçak, Discrete dynamical systems with SageMath, The Electronic Journal of Mathematics & Technology. 12(2) (2018), 292-308.
There are 24 citations in total.

Details

Primary Language English
Subjects Biological Mathematics
Journal Section Articles
Authors

Özlem Ak Gümüş 0000-0003-2610-8565

Early Pub Date December 29, 2024
Publication Date December 31, 2024
Submission Date May 9, 2024
Acceptance Date July 18, 2024
Published in Issue Year 2024 Volume: 6 Issue: 3

Cite

APA Ak Gümüş, Ö. (2024). Analyzing a Mathematical Model of the COVID-19 Pandemic with the Impact Symptomatic and Asymptomatic Transmissions. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(3), 543-556. https://doi.org/10.47112/neufmbd.2024.64
AMA Ak Gümüş Ö. Analyzing a Mathematical Model of the COVID-19 Pandemic with the Impact Symptomatic and Asymptomatic Transmissions. NEJSE. December 2024;6(3):543-556. doi:10.47112/neufmbd.2024.64
Chicago Ak Gümüş, Özlem. “Analyzing a Mathematical Model of the COVID-19 Pandemic With the Impact Symptomatic and Asymptomatic Transmissions”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, no. 3 (December 2024): 543-56. https://doi.org/10.47112/neufmbd.2024.64.
EndNote Ak Gümüş Ö (December 1, 2024) Analyzing a Mathematical Model of the COVID-19 Pandemic with the Impact Symptomatic and Asymptomatic Transmissions. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 3 543–556.
IEEE Ö. Ak Gümüş, “Analyzing a Mathematical Model of the COVID-19 Pandemic with the Impact Symptomatic and Asymptomatic Transmissions”, NEJSE, vol. 6, no. 3, pp. 543–556, 2024, doi: 10.47112/neufmbd.2024.64.
ISNAD Ak Gümüş, Özlem. “Analyzing a Mathematical Model of the COVID-19 Pandemic With the Impact Symptomatic and Asymptomatic Transmissions”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/3 (December 2024), 543-556. https://doi.org/10.47112/neufmbd.2024.64.
JAMA Ak Gümüş Ö. Analyzing a Mathematical Model of the COVID-19 Pandemic with the Impact Symptomatic and Asymptomatic Transmissions. NEJSE. 2024;6:543–556.
MLA Ak Gümüş, Özlem. “Analyzing a Mathematical Model of the COVID-19 Pandemic With the Impact Symptomatic and Asymptomatic Transmissions”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 6, no. 3, 2024, pp. 543-56, doi:10.47112/neufmbd.2024.64.
Vancouver Ak Gümüş Ö. Analyzing a Mathematical Model of the COVID-19 Pandemic with the Impact Symptomatic and Asymptomatic Transmissions. NEJSE. 2024;6(3):543-56.


32206                   17157           17158