Research Article
BibTex RIS Cite

Hava LiDAR Verilerininin Basit Üçgen Düzensiz Ağ Algoritması ile Filtrelenmesi

Year 2024, Volume: 6 Issue: 3, 495 - 511, 31.12.2024
https://doi.org/10.47112/neufmbd.2024.61

Abstract

Son yıllarda havadan ve karadan lazer tarama sistemleri jeo-uzamsal bilgi elde etmek için giderek daha popüler hale gelmiştir. Yüksek kaliteli 3B nokta bulutları çok çeşitli uygulamalar için kullanılmakta olup sayısal arazi modelleri (SAM) bu ürünlerden birini temsil etmektedir. Light Detection and Ranging (LiDAR) verileri, planlama uygulamalarının temel unsurları olan sayısal yükseklik modellerinin (SYM) üretilmesinde yaygın olarak kullanılmaktadır. LiDAR nokta bulutlarından zemin dışı nesnelerin çıkarılması, DTM üretim iş akışının ana sorunudur. Üçgenleştirilmiş düzensiz ağ (DÜA) yoğunlaştırma, LiDAR filtreleme algoritmaları arasında klasik bir tekniktir. Bu çalışmada, klasik DÜA yoğunlaştırmadan türetilen basit DÜA yoğunlaştırma (sTIN) adlı basit bir filtreleme algoritması önerilmiştir. sTIN'in performansı, uyarlanabilir üçgenleştirilmiş düzensiz ağ, basit morfolojik filtre ve geliştirilmiş aşamalı DÜA yoğunlaştırma olmak üzere üç filtre ile test edilmiştir. Önerilen algoritmanın ortalama tip I hata oranı %5,6, ortalama tip II hata oranı %10,42 ve ortalama toplam hata oranı %8,2'dir. Ayrıca, algoritmaların güçlü ve zayıf yönleri, karesel ortalama hata (KOH) değerleri ve SAM'ların görsel analizleri açısından incelenmiştir.

References

  • M. A. Sayar, H. Z. Selvi & İ. Buğdaycı, Determination of suruç tent city area by analytic hierarchy method, Necmettin Erbakan University Journal of Science and Engineering. 1 (2019), 20–31.
  • E. Jonuzi, S.S. Durduran & T. Alkan. North Macedonian cadastre towards cadastre 2034, Necmettin Erbakan University Journal of Science and Engineering. 4 (2022), 26-44. doi:10.47112/neufmbd.2022.3.
  • M. Erdönmez & A. Varlik. Oblique photogrammetry application and accuracy analysis with unmanned aerial vehicles in built areas, Necmettin Erbakan University Journal of Science and Engineering. 2 (2020), 1-11. doi:10.47112/neufmbd.2020.1.
  • B. Keleş. & S.S. Durduran. In terms of land use and land cover change using remote sensing technique: case of study in Osmaniye city, Necmettin Erbakan University Journal of Science and Engineering. 1 (2019), 32-52.
  • Z. Lijian, L. Zulong, L. Yingcheng, X. Yanli, L. Ming, W. Zhuolei & L. Xiaolong. Application and Analyses of Airborne Lidar Technology in Topographic Survey of Tidal Flat and Coastal Zone, In the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 1–4.
  • T.J. Pingel, K.C. Clarke & W.A. McBride. An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing. 77 (2013), 21-30. doi:10.1016/j.isprsjprs.2012.12.002.
  • P. Axelsson. Processing of laser scanner data—algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing. 54(2-3) (1999), 138-147. doi:10.1016/S0924-2716(99)00008-8.
  • Axelsson, P. DEM Generation from Laser Scanner Data Using adaptive TIN Models. International Archives of Photogrammetry and Remote Sensing. 33 (2000), 110-117. doi:10.1016/j.isprsjprs.2005.10.005.
  • K. Kraus & N. Pfeifer. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing. 53 (1998), 193-203. doi:10.1016/S0924-2716(98)00009-4.
  • N. Pfeifer, P. Stadler, & C. Briese. Derivation of Digital Terrain Models in The Scop++ Environment. OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Digital Elevation Models, 2001, 67-80.
  • G. Sohn, & I. Dowman. Terrain Surface Reconstruction by the Use of Tetrahedron Model with the Mdl Criterion. International Archives of Photogrammetry and Remote Sensing, Remote Sensing and Spatial Information Sciences XXXIV (Pt. 3A), 2022, 336–344.
  • G. Sithole, & G. Vosselman. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing. 59, (2004), 85-101. doi:10.1016/j.isprsjprs.2004.05.004.
  • X. Meng, N. Currit, & K. Zhao. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sensing. 2(10) (2010), 833-860. doi:10.3390/rs2030833.
  • J. Kilian, N. Haala, & M. Englich. Capture and evaluation of airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing. 31 (1996), 383–388.
  • K. Zhang, S.C. Chen, D. Whitman, M. L. Shyu, J. Yan, & C. Zhang. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing. 41 (2003), 872-882. doi:10.1109/TGRS.2003.810682.
  • Q. Chen, P. Gong, D. Baldocchi, & G. Xie. Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering & Remote Sensing. 2 (2007), 175-185. doi:10.14358/PERS.73.2.175.
  • C. Chen, Y. Li, W. Li, & H. Dai. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing. 82 (2013), 1-9. doi:10.1016/j.isprsjprs.2013.05.001.
  • D. Mongus, N. Lukač, & B. Žalik. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces. ISPRS Journal of Photogrammetry and Remote Sensing. 93 (2014), 145-156. doi:10.1016/j.isprsjprs.2013.12.002.
  • Y. Li, B. Yong, P. van Oosterom, M. Lemmens, H. Wu, L. Ren & J. Zhou. Airborne LiDAR data filtering based on geodesic transformations of mathematical morphology. Remote Sensing. 9 (2017), 1104. doi:10.3390/rs9111104.
  • G. Vosselman. Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing. 33 (2000), Part B3/2, 678-684. doi:10.1016/S0924-2716(98)00009-4.
  • J. Susaki. Adaptive slope filtering of airborne lidar data in urban areas for Digital Terrain Model (DTM) generation. Remote Sensing. 4(6) (2012), 1804-1819. doi:10.3390/rs4061804.
  • X. Meng, L. Wang, J.L. Silván-Cárdenas, & N. Currit. (2009). A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS Journal of Photogrammetry and Remote Sensing. 64 (2009), 117-124. doi:10.1016/j.isprsjprs.2008.09.001.
  • C.-C. Feng & Z. Guo. Automating parameter learning for classifying terrestrial LiDAR point cloud using 2D land use maps. Remote Sensing. 10 (2018), 1192-1214. doi:10.3390/rs10081192.
  • J. Zhang, X. Lin & X. Ning. SVM-based classification of segmented airborne LiDAR point clouds in urban areas. Remote Sensing. 5(8) (2013), 3749–3775. doi:10.3390/rs5083749.
  • J. Lopatin, K. Dolos, H. J. Hernández, M. Galleguillos & F. E. Fassnacht. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sensing of Environment. 173 (2016), 200-210. doi:10.1016/j.rse.2015.11.029.
  • J. Niemeyer, F. Rottensteiner & U. Soergel. Contextual classification of LiDAR data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sensing. 87 (2014), 152–165. doi:10.1016/j.isprsjprs.2013.11.001.
  • R. Shapovalov, A. Velizhev & O. Barinova. Non-associative Markov networks for 3D point cloud classification. International Archives of Photogrammetry and Remote Sensing, Remote Sensing and Spatial Information Sciences 2018, 103–108.
  • A.B. Jahromi, M.J.V. Zoej, A. Mohammadzadeh, & S. Sadeghian. A novel filtering algorithm for bare-earth extraction from airborne laser scanning data using an artificial neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 4 (2011), 836-843. doi:10.1109/JSTARS.2011.2132793.
  • X. Zhao, Q. Guo, Y. Su, & B. Xue. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing. 117 (2016), 79-91. doi:10.1016/j.isprsjprs.2016.03.016.
  • P. Ghamisi, Y. Chen, & X. X. Zhu. A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data. IEEE Geoscience and Remote Sensing Letters. 13 (2016), 1537-1541. doi:10.1109/LGRS.2016.2595108.
  • L. Mou, L. Bruzzone, & X. Zhu. X. Learning spectral-spatialoral features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing. 57 (2019), 924-935. doi:10.1109/TGRS.2018.2863224.
  • B. Erol. An automated height transformation using precise geoid models. Scientific Research and Essays. 6 (2011), 1351-1363. doi:10.5897/SRE10.1119.
  • P. Rashidi, & H. Rastiveis. Ground filtering LiDAR data based on multi-scale analysis of height difference threshold. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42, (2017), 7–10. doi:10.5194/isprs-archives-XLII-4-W4-225-2017.
  • G. Sithole, & G. Vosselman. ISPRS comparison of filters. ISPRS Commission III, 2003, 71-78. doi:10.1093/intimm/dxs147.
  • J. Zhang, & X. Lin. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS Journal of Photogrammetry and Remote Sensing. 81 (2013), 44-59. doi:10.1016/j.isprsjprs.2013.04.001.
  • S. Smith, D. Holland, & P. Longley. Investigating the spatial structure of error in digital surface models derived from laser scanning data. Int. Arch. Photogramm. Remote Sensing, 2003, 7.
  • E.P. Baltsavias. A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry & Remote Sensing. 54 (1999), 83-94. doi:10.1016/S0924-2716(99)00014-3.
  • L. Pereira, & G. Gonçalves. (2010). Accuracy of a DTM derived from full-waveform laser scanning data under unstructured eucalypt forest: A case study. FIG Congress, 2010, 16.
  • S.E. Reutebuch, R.J. McGaughey, H.E. Andersen, & W.W. Carson. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing. 29 (2003) 527-535. doi:10.5589/m05-016.
  • R.G. Congalton. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment. 37 (1999), 35-46. doi:10.1016/0034-4257(91)90048-B.
  • S. Seo, & C.G. O’Hara. Parametric investigation of the performance of lidar filters using different surface contexts. Photogrammetric Engineering and Remote Sensing. 74 (2008), 343-362.
  • M.E. Hodgson, & P. Bresnahan. Accuracy of Airborne Lidar-Derived Elevation. Photogrammetric Engineering & Remote Sensing. 3 (2004), 331-339. doi:10.14358/PERS.70.3.331.
  • H. Mitasova, M.F. Overton, J.J. Recalde, D.J. Bernstein, & C.W. Freeman. Raster-Based Analysis of Coastal Terrain Dynamics from Multitemporal Lidar Data. Journal of Coastal Research. 252 (2009), 507-514. doi:10.2112/07-0976.1.
  • Z. Hui, Y. Hu, Y.Z. Yevenyo, & X. Yu. An improved morphological algorithm for filtering airborne LiDAR point cloud based on multi-level kriging interpolation. Remote Sensing. 8(1) (2016), 35. doi:10.3390/rs8010035.
  • S.C. Popescu, & K. Zhao. A voxel-based lidar method for estimating crown base height for deciduous and pine trees. Remote Sensing of Environment. 112 (2008), 767-781. doi:10.1016/j.rse.2007.06.011.
  • K. Zhao, S. Popescu, & R. Nelson. Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. Remote Sensing of Environment. 113 (2009), 182-196. doi:10.1016/j.rse.2008.09.009.
  • S. A. Bello, S. Yu, C. Wang, J. M. Adam & J. Li. Review: Deep learning on 3D point clouds. Remote Sensing. 12 (2020), 1729. doi:10.3390/rs12111729.
  • Y. He, H. Yu, X. Liu, Z. Yang, W. Sun, Y. Wang., Q. Fu, Y. Zou & A. Mian. Deep Learning based 3D Segmentation: A Survey. arXiv, 2021. doi:10.48550/arXiv.2103.05423.

Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network

Year 2024, Volume: 6 Issue: 3, 495 - 511, 31.12.2024
https://doi.org/10.47112/neufmbd.2024.61

Abstract

In recent years, airborne and terrestrial laser scanning systems have become increasingly popular for obtaining geospatial information. High-quality 3D point clouds are used for a wide range of applications, with digital terrain models (DTMs) representing one of these products. Light Detection and Ranging (LiDAR) data is widely used in producing digital elevation models (DEM), which are fundamental elements of planning applications. Removing non-ground objects from LiDAR point clouds is the main problem of the DTM production workflow. Triangulated irregular network (TIN) densification is a classical technique among LiDAR filtering algorithms. In this study, a simple filtering algorithm entitled simple TIN densification (sTIN) is proposed, which is derived from classic TIN densification. The performance of sTIN is tested with three filters, namely, the adaptive triangulated irregular network, the simple morphological filter and the improved progressive TIN densification. The proposed algorithm has an average type I error rate of 5.6%, an average type II error rate of 10.42% and an average total error rate of 8.2%. In addition, the strengths and weaknesses of the algorithms are examined with regards to the root-mean-square error (RMSE) values and visual analyses of DTMs.

References

  • M. A. Sayar, H. Z. Selvi & İ. Buğdaycı, Determination of suruç tent city area by analytic hierarchy method, Necmettin Erbakan University Journal of Science and Engineering. 1 (2019), 20–31.
  • E. Jonuzi, S.S. Durduran & T. Alkan. North Macedonian cadastre towards cadastre 2034, Necmettin Erbakan University Journal of Science and Engineering. 4 (2022), 26-44. doi:10.47112/neufmbd.2022.3.
  • M. Erdönmez & A. Varlik. Oblique photogrammetry application and accuracy analysis with unmanned aerial vehicles in built areas, Necmettin Erbakan University Journal of Science and Engineering. 2 (2020), 1-11. doi:10.47112/neufmbd.2020.1.
  • B. Keleş. & S.S. Durduran. In terms of land use and land cover change using remote sensing technique: case of study in Osmaniye city, Necmettin Erbakan University Journal of Science and Engineering. 1 (2019), 32-52.
  • Z. Lijian, L. Zulong, L. Yingcheng, X. Yanli, L. Ming, W. Zhuolei & L. Xiaolong. Application and Analyses of Airborne Lidar Technology in Topographic Survey of Tidal Flat and Coastal Zone, In the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 1–4.
  • T.J. Pingel, K.C. Clarke & W.A. McBride. An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing. 77 (2013), 21-30. doi:10.1016/j.isprsjprs.2012.12.002.
  • P. Axelsson. Processing of laser scanner data—algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing. 54(2-3) (1999), 138-147. doi:10.1016/S0924-2716(99)00008-8.
  • Axelsson, P. DEM Generation from Laser Scanner Data Using adaptive TIN Models. International Archives of Photogrammetry and Remote Sensing. 33 (2000), 110-117. doi:10.1016/j.isprsjprs.2005.10.005.
  • K. Kraus & N. Pfeifer. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing. 53 (1998), 193-203. doi:10.1016/S0924-2716(98)00009-4.
  • N. Pfeifer, P. Stadler, & C. Briese. Derivation of Digital Terrain Models in The Scop++ Environment. OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Digital Elevation Models, 2001, 67-80.
  • G. Sohn, & I. Dowman. Terrain Surface Reconstruction by the Use of Tetrahedron Model with the Mdl Criterion. International Archives of Photogrammetry and Remote Sensing, Remote Sensing and Spatial Information Sciences XXXIV (Pt. 3A), 2022, 336–344.
  • G. Sithole, & G. Vosselman. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing. 59, (2004), 85-101. doi:10.1016/j.isprsjprs.2004.05.004.
  • X. Meng, N. Currit, & K. Zhao. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sensing. 2(10) (2010), 833-860. doi:10.3390/rs2030833.
  • J. Kilian, N. Haala, & M. Englich. Capture and evaluation of airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing. 31 (1996), 383–388.
  • K. Zhang, S.C. Chen, D. Whitman, M. L. Shyu, J. Yan, & C. Zhang. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing. 41 (2003), 872-882. doi:10.1109/TGRS.2003.810682.
  • Q. Chen, P. Gong, D. Baldocchi, & G. Xie. Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering & Remote Sensing. 2 (2007), 175-185. doi:10.14358/PERS.73.2.175.
  • C. Chen, Y. Li, W. Li, & H. Dai. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing. 82 (2013), 1-9. doi:10.1016/j.isprsjprs.2013.05.001.
  • D. Mongus, N. Lukač, & B. Žalik. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces. ISPRS Journal of Photogrammetry and Remote Sensing. 93 (2014), 145-156. doi:10.1016/j.isprsjprs.2013.12.002.
  • Y. Li, B. Yong, P. van Oosterom, M. Lemmens, H. Wu, L. Ren & J. Zhou. Airborne LiDAR data filtering based on geodesic transformations of mathematical morphology. Remote Sensing. 9 (2017), 1104. doi:10.3390/rs9111104.
  • G. Vosselman. Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing. 33 (2000), Part B3/2, 678-684. doi:10.1016/S0924-2716(98)00009-4.
  • J. Susaki. Adaptive slope filtering of airborne lidar data in urban areas for Digital Terrain Model (DTM) generation. Remote Sensing. 4(6) (2012), 1804-1819. doi:10.3390/rs4061804.
  • X. Meng, L. Wang, J.L. Silván-Cárdenas, & N. Currit. (2009). A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS Journal of Photogrammetry and Remote Sensing. 64 (2009), 117-124. doi:10.1016/j.isprsjprs.2008.09.001.
  • C.-C. Feng & Z. Guo. Automating parameter learning for classifying terrestrial LiDAR point cloud using 2D land use maps. Remote Sensing. 10 (2018), 1192-1214. doi:10.3390/rs10081192.
  • J. Zhang, X. Lin & X. Ning. SVM-based classification of segmented airborne LiDAR point clouds in urban areas. Remote Sensing. 5(8) (2013), 3749–3775. doi:10.3390/rs5083749.
  • J. Lopatin, K. Dolos, H. J. Hernández, M. Galleguillos & F. E. Fassnacht. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sensing of Environment. 173 (2016), 200-210. doi:10.1016/j.rse.2015.11.029.
  • J. Niemeyer, F. Rottensteiner & U. Soergel. Contextual classification of LiDAR data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sensing. 87 (2014), 152–165. doi:10.1016/j.isprsjprs.2013.11.001.
  • R. Shapovalov, A. Velizhev & O. Barinova. Non-associative Markov networks for 3D point cloud classification. International Archives of Photogrammetry and Remote Sensing, Remote Sensing and Spatial Information Sciences 2018, 103–108.
  • A.B. Jahromi, M.J.V. Zoej, A. Mohammadzadeh, & S. Sadeghian. A novel filtering algorithm for bare-earth extraction from airborne laser scanning data using an artificial neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 4 (2011), 836-843. doi:10.1109/JSTARS.2011.2132793.
  • X. Zhao, Q. Guo, Y. Su, & B. Xue. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing. 117 (2016), 79-91. doi:10.1016/j.isprsjprs.2016.03.016.
  • P. Ghamisi, Y. Chen, & X. X. Zhu. A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data. IEEE Geoscience and Remote Sensing Letters. 13 (2016), 1537-1541. doi:10.1109/LGRS.2016.2595108.
  • L. Mou, L. Bruzzone, & X. Zhu. X. Learning spectral-spatialoral features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing. 57 (2019), 924-935. doi:10.1109/TGRS.2018.2863224.
  • B. Erol. An automated height transformation using precise geoid models. Scientific Research and Essays. 6 (2011), 1351-1363. doi:10.5897/SRE10.1119.
  • P. Rashidi, & H. Rastiveis. Ground filtering LiDAR data based on multi-scale analysis of height difference threshold. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42, (2017), 7–10. doi:10.5194/isprs-archives-XLII-4-W4-225-2017.
  • G. Sithole, & G. Vosselman. ISPRS comparison of filters. ISPRS Commission III, 2003, 71-78. doi:10.1093/intimm/dxs147.
  • J. Zhang, & X. Lin. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS Journal of Photogrammetry and Remote Sensing. 81 (2013), 44-59. doi:10.1016/j.isprsjprs.2013.04.001.
  • S. Smith, D. Holland, & P. Longley. Investigating the spatial structure of error in digital surface models derived from laser scanning data. Int. Arch. Photogramm. Remote Sensing, 2003, 7.
  • E.P. Baltsavias. A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry & Remote Sensing. 54 (1999), 83-94. doi:10.1016/S0924-2716(99)00014-3.
  • L. Pereira, & G. Gonçalves. (2010). Accuracy of a DTM derived from full-waveform laser scanning data under unstructured eucalypt forest: A case study. FIG Congress, 2010, 16.
  • S.E. Reutebuch, R.J. McGaughey, H.E. Andersen, & W.W. Carson. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing. 29 (2003) 527-535. doi:10.5589/m05-016.
  • R.G. Congalton. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment. 37 (1999), 35-46. doi:10.1016/0034-4257(91)90048-B.
  • S. Seo, & C.G. O’Hara. Parametric investigation of the performance of lidar filters using different surface contexts. Photogrammetric Engineering and Remote Sensing. 74 (2008), 343-362.
  • M.E. Hodgson, & P. Bresnahan. Accuracy of Airborne Lidar-Derived Elevation. Photogrammetric Engineering & Remote Sensing. 3 (2004), 331-339. doi:10.14358/PERS.70.3.331.
  • H. Mitasova, M.F. Overton, J.J. Recalde, D.J. Bernstein, & C.W. Freeman. Raster-Based Analysis of Coastal Terrain Dynamics from Multitemporal Lidar Data. Journal of Coastal Research. 252 (2009), 507-514. doi:10.2112/07-0976.1.
  • Z. Hui, Y. Hu, Y.Z. Yevenyo, & X. Yu. An improved morphological algorithm for filtering airborne LiDAR point cloud based on multi-level kriging interpolation. Remote Sensing. 8(1) (2016), 35. doi:10.3390/rs8010035.
  • S.C. Popescu, & K. Zhao. A voxel-based lidar method for estimating crown base height for deciduous and pine trees. Remote Sensing of Environment. 112 (2008), 767-781. doi:10.1016/j.rse.2007.06.011.
  • K. Zhao, S. Popescu, & R. Nelson. Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. Remote Sensing of Environment. 113 (2009), 182-196. doi:10.1016/j.rse.2008.09.009.
  • S. A. Bello, S. Yu, C. Wang, J. M. Adam & J. Li. Review: Deep learning on 3D point clouds. Remote Sensing. 12 (2020), 1729. doi:10.3390/rs12111729.
  • Y. He, H. Yu, X. Liu, Z. Yang, W. Sun, Y. Wang., Q. Fu, Y. Zou & A. Mian. Deep Learning based 3D Segmentation: A Survey. arXiv, 2021. doi:10.48550/arXiv.2103.05423.
There are 48 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Articles
Authors

Fırat Uray 0000-0001-9555-3190

Abdullah Varlık 0000-0003-2072-3313

Early Pub Date December 14, 2024
Publication Date December 31, 2024
Submission Date May 10, 2024
Acceptance Date July 25, 2024
Published in Issue Year 2024 Volume: 6 Issue: 3

Cite

APA Uray, F., & Varlık, A. (2024). Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(3), 495-511. https://doi.org/10.47112/neufmbd.2024.61
AMA Uray F, Varlık A. Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network. NEJSE. December 2024;6(3):495-511. doi:10.47112/neufmbd.2024.61
Chicago Uray, Fırat, and Abdullah Varlık. “Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, no. 3 (December 2024): 495-511. https://doi.org/10.47112/neufmbd.2024.61.
EndNote Uray F, Varlık A (December 1, 2024) Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 3 495–511.
IEEE F. Uray and A. Varlık, “Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network”, NEJSE, vol. 6, no. 3, pp. 495–511, 2024, doi: 10.47112/neufmbd.2024.61.
ISNAD Uray, Fırat - Varlık, Abdullah. “Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/3 (December 2024), 495-511. https://doi.org/10.47112/neufmbd.2024.61.
JAMA Uray F, Varlık A. Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network. NEJSE. 2024;6:495–511.
MLA Uray, Fırat and Abdullah Varlık. “Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 6, no. 3, 2024, pp. 495-11, doi:10.47112/neufmbd.2024.61.
Vancouver Uray F, Varlık A. Filtering Airborne LIDAR Data Using Simple Triangulation Irregular Network. NEJSE. 2024;6(3):495-511.


32206                   17157           17158