Research Article
BibTex RIS Cite

Pestisit Tespiti için Konjuge Polimer Nanopartikül Tabanlı Biyosensörün Tasarımı ve Geliştirilmesi

Year 2025, Volume: 7 Issue: 2, 294 - 308, 31.08.2025

Abstract

Pestisitlerin çeşitli sağlık sorunlarıyla ilişkili olması, gıda ürünleri ve su kaynaklarındaki kalıntıların küresel ölçekte ciddi bir sorun haline gelmesine yol açmaktadır. Bu nedenle, pestisitlerin gıda ve sebzelerde insan vücudu ile temas etmeden önce tespit edilmesini sağlayacak algılama sistemlerinin geliştirilmesine acil ihtiyaç vardır. Bu çalışmada, poli(3-heksiltiyofen) nanopartikülleri (P3HTNP’ler) ve poli(3,4-etilendioksitiyofen) nanopartikülleri (PEDOTNP’ler) kullanılarak asetilkolinesteraz (AChE) temelli elektrokimyasal bir biyosensör geliştirilmiştir. Biyosensörün hazırlanmasında P3HTNP’ler sentezlenmiş ve Dinamik Işık Saçılımı (DLS), zeta potansiyeli, Alan Emisyonlu Taramalı Elektron Mikroskopisi (FE-SEM), Ultraviyole-Görünür Işık (UV-Vis) absorpsiyon spektroskopisi ve floresans emisyon ölçümleri ile karakterize edilmiştir. P3HTNP’lerin PEDOTNP’ler ile kombinasyonu sonucunda, asetiltiyokolinklorür (AThCl) için yüksek performanslı bir biyosensör (PEDOTNP’ler/P3HTNP’ler/AChE) elde edilmiştir. Optimizasyon çalışmalarının ardından biyosensörün elektrokimyasal özellikleri, yüzey morfolojisi ve analitik performans parametreleri değerlendirilmiştir. Geliştirilen biyosensör, 0.009 mM tespit sınırı (LOD) ve 37.843 μA·mM⁻¹·cm⁻² duyarlılık değeri ile üstün bir analitik performans sergilemiştir. Ayrıca, hedef biyosensör girişim etkilerine karşı yüksek seçicilik göstermiş ve uzun vadeli kullanımlarda da yüksek stabilitesini sürdürmüştür.

References

  • A. Mulchandani, W. Chen, P. Mulchandani, J. Wang, K.R. Rogers, Biosensors for direct determination of organophosphate pesticides, Biosensors and Bioelectronics. 16 (2001), 225-230. doi:10.1016/S0956-5663(01)00126-9.
  • V. Dhull, A. Gahlaut, N. Dilbaghi, V. Hooda, Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review, Biochemistry Research International. 2013 (2013), 731501. doi:10.1155/2013/731501.
  • A. Cappiello, G. Famiglini, P. Palma, F. Mangani, Trace level determination of organophosphorus pesticides in water with the new direct-electron ionization LC/MS interface, Analytical Chemistry. 74 (2002), 3547-3554. doi:10.1021/AC015685F.
  • Y. Li, R. Zhao, L. Shi, G. Han, Y. Xiao, Acetylcholinesterase biosensor based on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotube composites for detection of pesticides, RSC Advances. 7 (2017), 53570-53577. doi:10.1039/C7RA08226F.
  • N. Bhalla, P. Jolly, N. Formisano, P. Estrela, Introduction to biosensors, Essays in Biochemistry. 60 (2016), 1-8. doi:10.1042/EBC20150001.
  • P. Jolly, N. Formisano, P. Estrela, DNA aptamer-based detection of prostate cancer, Chemical Papers. 69 (2015), 77-89. doi:10.1515/CHEMPAP-2015-0025.
  • B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, J. Robbens, Recent advances in recognition elements of food and environmental biosensors: A review, Biosensors and Bioelectronics. 26 (2010), 1178-1194. doi: 10.1016/J.BIOS.2010.07.033.
  • M. Bhattu, M. Verma, D. Kathuria, Recent advancements in the detection of organophosphate pesticides: a review, Analytical Methods. 13 (2021), 4390-4428. doi:10.1039/D1AY01186C.
  • M. Kesik, F. Ekiz Kanik, J. Turan, M. Kolb, S. Timur, M. Bahadir, L. Toppare, An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides, Sensors and Actuators B: Chemical. 205 (2014), 39-49. doi: 10.1016/J.SNB.2014.08.058.
  • A. Vinotha Alex, A. Mukherjee, Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection, Microchemical Journal. 161 (2021), 105779. doi: 10.1016/J.MICROC.2020.105779.
  • H. Celik, S. Soylemez, An Electrochemical Acetylcholinesterase Biosensor Based on Fluorene(bisthiophene) Comprising Polymer for Paraoxon Detection, Electroanalysis. 35 (2023), e202200271. doi:10.1002/ELAN.202200271.
  • H. Parham, N. Rahbar, Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode, Journal of Hazardous Materials. 177 (2010), 1077-1084. doi: 10.1016/J.JHAZMAT.2010.01.031.
  • A.S. Soğancı, A. Orman, The Influence of Polypropylene Fiber on High and Low Plasticity Clay, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 6 (2024), 178-187. doi:10.47112/NEUFMBD.2024.41.
  • H. Lin, H. Bai, Z. Yang, Q. Shen, M. Li, Y. Huang, F. Lv, S. Wang, Conjugated polymers for biomedical applications, Chemical Communications. 58 (2022), 7232-7244. doi:10.1039/D2CC02177C.
  • K. Çetin, K. Şarkaya, B. Kavakcioğlu, M. Bilgileri, M. Geçmişi, Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 267-277. doi:10.47112/NEUFMBD.2023.24.
  • M. Ali Kamyabi, N. Hajari, A.P.F. Turner, A. Tiwari, A high-performance glucose biosensor using covalently immobilised glucose oxidase on a poly(2,6-diaminopyridine) /carbon nanotube electrode, Talanta. 116 (2013), 801-808. doi: 10.1016/J.TALANTA.2013.07.068.
  • T. Ahuja, I.A. Mir, D. Kumar, Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials. 28 (2007), 791-805. doi: 10.1016/J.BIOMATERIALS.2006.09.046.
  • J.C. Vidal, E. Garcia-Ruiz, J.R. Castillo, Recent Advances in Electropolymerized Conducting Polymers in Amperometric Biosensors, Microchimica Acta. 143 (2003), 93-111. doi:10.1007/S00604-003-0067-4.
  • W. Schuhmann, Conducting polymer based amperometric enzyme electrodes, Mikrochimica Acta. 121 (1995), 1-29. doi:10.1007/BF01248237/METRICS.
  • S. Soylemez, M. Kesika, L. Toppare, Biosensing Devices: Conjugated Polymer Based Scaffolds. 2019, p. 386, https://hdl.handle.net/11511/47790.
  • D. Tuncel, H.V. Demir, Conjugated polymer nanoparticles, Nanoscale. 2 (2010), 484-494. doi:10.1039/B9NR00374F.
  • İ. Akin, E. Zor, H. Bi̇ngöl, S. Yazar, C. Author, N. Erbakan Üniversitesi, A. Keleşoğlu Eğitim Fakültesi, M. ve Fen Bilimleri Eğitimi Bölümü, GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 38-52. doi:10.47112/NEUFMBD.2023.8.
  • J.E. Millstone, D.F.J. Kavulak, C.H. Woo, T.W. Holcombe, E.J. Westling, A.L. Briseno, M.F. Toney, J.M.J. Fréchet, Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles, Langmuir. 26 (2010), 13056-13061. doi: 10.1021 /LA1022938
  • J.A. Labastide, M. Baghgar, I. Dujovne, B.H. Venkatraman, D.C. Ramsdell, D. Venkataraman, M.D. Barnes, Time- and polarization-resolved photoluminescence of individual semicrystalline polythiophene (P3HT) nanoparticles, Journal of Physical Chemistry Letters. 2 (2011), 2089-2093. doi:10.1021/JZ20095 8X.
  • S. Kurbanoglu, S.C. Cevher, L. Toppare, A. Cirpan, S. Soylemez, Electrochemical biosensor based on three components random conjugated polymer with fullerene (C60), Bioelectrochemistry (Amsterdam, Netherlands). 147 (2022). doi:10.1016/J.BIOELECHEM.2022.108219.
  • A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Surface Technology. 20 (1983) 91-92.
  • Y. Qu, Q. Sun, F. Xiao, G. Shi, L. Jin, Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides, Bioelectrochemistry. 77 (2010), 139-144. doi:10.1016/J.BIOELECHEM.2009.08.001.
  • R. Dutta, P. Puzari, Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode, Biosensors and Bioelectronics. 52 (2014), 166-172. doi:10.1016/J.BIOS.2013.08.050.
  • H. Dzudzevic Cancar, S. Soylemez, Y. Akpinar, M. Kesik, S. Göker, G. Gunbas, M. Volkan, L. Toppare, A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides, ACS Applied Materials and Interfaces. 8 (2016), 8058-8067. doi:10.1021/ACSAMI.5B12383.
  • L.F. Loguercio, A. Thesing, P. Demingos, C.D.L. de Albuquerque, R.S.B. Rodrigues, A.G. Brolo, J.F.L. Santos, Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide, Sensors and Actuators B: Chemical. 339 (2021), 129875. doi: 10.1016/J.SNB.2021.129875.
  • D. Du, J. Ding, J. Cai, A. Zhang, Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan, Colloids and Surfaces B: Biointerfaces. 58 (2007), 145-150. doi: 10.1016/j.colsurfb.2007.03.006.
  • Y. Wang, Y. Cheng, N. Wu, Z. Zhang, Graphitic Carbon Nitride/Poly(3-hexylthiophene) Nanocomposites for the Photoelectrochemical Detection of H2O2in Living Cells, ACS Applied Nano Materials. 3 (2020), 8598-8603. doi: 10.1021/ACSANM.0C02114.
  • J. Jeong, M. Essafi, C. Lee, M. Haoues, M.F. Diouani, H. Kim, Y. Kim, Ultrasensitive detection of hazardous reactive oxygen species using flexible organic transistors with polyphenol-embedded conjugated polymer sensing layers, Journal of Hazardous Materials. 355 (2018), 17-24. doi:10.1016/J.J HAZMAT.2018.04.063.
  • S. Sharma, D. Kar, P.D. Khanikar, A. Moudgil, P. Mishra, S. Das, Hybrid MoSe 2 /P3HT Transistor for Real-Time Ammonia Sensing in Biofluids, ACS Applied Materials & Interfaces. 16 (2024), 30648-30657. doi:10.1021/acsami.4c02352.
  • M. Xiao, Q. Xiong, C. Yang, H. Deng, R. Yuan, Y. Yuan, Highly efficient photocathodic cascade material for constructing sensitive photoelectrochemical biosensor, Analytica Chimica Acta. 1272 (2023), 341436. doi: 10.1016/J.ACA.2023.341436.
  • N. Elgiddawy, S. Ren, A. Yassar, A. Louis-Joseph, H. Sauriat-Dorizon, W.M.A. El Rouby, A.O. El-Gendy, A.A. Farghali, H. Korri-Youssoufi, Dispersible Conjugated Polymer Nanoparticles as Biointerface Materials for Label-Free Bacteria Detection, ACS Applied Materials & Interfaces. 12 (2020) 39979-39990. doi:10.1021/acsami.0c08305.
  • R. Singhal, A. Chaubey, K. Kaneto, W. Takashima, B.D. Malhotra, Poly-3-hexyl thiophene Langmuir-Blodgett films for application to glucose biosensor, Biotechnology, and Bioengineering. 85 (2004), 277-282. doi:10.1002/BIT.10869.
  • P. Seshadri, K. Manoli, N. Schneiderhan-Marra, U. Anthes, P. Wierzchowiec, K. Bonrad, C. Di Franco, L. Torsi, Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor, Biosensors and Bioelectronics. 104 (2018), 113-119. doi: 10.1016/j.bios.2017.12.041.
  • K.-H. Wang, W.-P. Hsu, L.-H. Chen, W.-D. Lin, Y.-L. Lee, Extensibility effect of poly(3-hexylthiophene) on the glucose sensing performance of mixed poly(3-hexylthiophene)/octadecylamine/glucose oxidase Langmuir-Blodgett films, Colloids and Surfaces B: Biointerfaces. 155 (2017), 104-110. doi: 10.1016/j.colsurfb.2017.04.006.
  • S.K. Sharma, R. Singhal, B.D. Malhotra, N. Sehgal, A. Kumar, Lactose biosensor based on Langmuir–Blodgett films of poly (3-hexyl thiophene), Biosensors and Bioelectronics. 20 (2004), 651-657. doi: 10.1016/j.bios.2004.03.020.
  • H. Runfang, Y. Yangfan, L. Leilei, J. Jianlong, Z. Qiang, D. Lifeng, S. Shengbo, L. Qiang, P3HT-based organic field effect transistor for low-cost, label-free detection of immunoglobulin G, Journal of Biotechnology. 359 (2022), 75-81. doi: 10.1016/j.jbiotec.2022.09.022.
  • D. Jin, Q. Xu, Y. Wang, X. Hu, A derivative photoelectrochemical sensing platform for herbicide acetochlor based on TiO2–poly (3-hexylthiophene) –ionic liquid nanocomposite film modified electrodes, Talanta. 127 (2014), 169-174. doi: 10.1016/j.talanta.2014.01.058.
  • N. Elgiddawy, S. Ren, W. Ghattas, W.M.A. El Rouby, A.O. El-Gendy, A.A. Farghali, A. Yassar, H. Korri-Youssoufi, Antimicrobial Activity of Cationic Poly(3-hexylthiophene) Nanoparticles Coupled with Dual Fluorescent and Electrochemical Sensing: Theragnostic Prospect, Sensors. 21 (2021), 1715. doi:10.3390/s21051715.
  • C. Bertoni, P. Naclerio, E. Viviani, S. Dal Zilio, S. Carrato, A. Fraleoni-Morgera, Nanostructured P3HT as a Promising Sensing Element for Real-Time, Dynamic Detection of Gaseous Acetone, Sensors. 19 (2019), 1296. doi:10.3390/s19061296.
  • K.-X. Han, C.-C. Wu, W.-F. Hsu, W. Chien, C.-F. Yang, Preparation of ultrafast ammonia sensor based on cross-linked ZnO nanorods coated with poly(3-hexylthiophene), Synthetic Metals. 299 (2023), 117449. doi: 10.1016/j.synthmet.2023.117449.
  • Y. Yang, H.E. Katz, Hybrid of P3HT and ZnO@GO nanostructured particles for increased NO 2 sensing response, Journal of Materials Chemistry C. 5 (2017), 2160-2166. doi:10.1039/C6TC04908G.
  • J. Ahmed, M. Faisal, S.A. Alsareii, M. Jalalah, F.A. Harraz, A novel gold-decorated porous silicon-poly(3-hexylthiophene) ternary nanocomposite as a highly sensitive and selective non-enzymatic dopamine electrochemical sensor, Journal of Alloys and Compounds. 931 (2023), 167403. doi:10.1016/j.j allcom.2022.167403.

Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection

Year 2025, Volume: 7 Issue: 2, 294 - 308, 31.08.2025

Abstract

Because pesticides are linked to various health issues, their residues in edible foodstuffs and water sources are a serious global issue. For this purpose, there is an urgent requirement for the development of sensing systems for the recognition of pesticides from food and vegetables prior to being consumed. By using the nanoparticles of poly(3-hexylthiophene) nanoparticles (P3HTNPs) and poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOTNPs), an electrochemical acetylcholinesterase (AChE) based biosensor was created in response to this challenge. To create such a sensor (PEDOTNPs/P3HTNPs/AChE), P3HTNPs were synthesized and characterized in terms of DLS (Dynamic Light Scattering), zeta potential, FE-SEM (Field Emission-Scanning Electron Microscopy), Ultraviolet Visible (UV-Vis) absorption, and fluorescence emission properties. After the combination of P3HTNPs with PEDOTNPs, the desired biosensor was created with high performance towards AThCl. After all optimization studies, analytical performances, electrochemical and surface characteristics of the biosensor were evaluated. PEDOTNPs/P3HTNPs/AChE biosensor has a limit of detection (LOD) and sensitivity values of 0.009 mM and 37.843 μAmM–1cm–2, respectively. In addition, the biosensor has an excellent anti-interfering ability and long-term stability.

References

  • A. Mulchandani, W. Chen, P. Mulchandani, J. Wang, K.R. Rogers, Biosensors for direct determination of organophosphate pesticides, Biosensors and Bioelectronics. 16 (2001), 225-230. doi:10.1016/S0956-5663(01)00126-9.
  • V. Dhull, A. Gahlaut, N. Dilbaghi, V. Hooda, Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review, Biochemistry Research International. 2013 (2013), 731501. doi:10.1155/2013/731501.
  • A. Cappiello, G. Famiglini, P. Palma, F. Mangani, Trace level determination of organophosphorus pesticides in water with the new direct-electron ionization LC/MS interface, Analytical Chemistry. 74 (2002), 3547-3554. doi:10.1021/AC015685F.
  • Y. Li, R. Zhao, L. Shi, G. Han, Y. Xiao, Acetylcholinesterase biosensor based on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotube composites for detection of pesticides, RSC Advances. 7 (2017), 53570-53577. doi:10.1039/C7RA08226F.
  • N. Bhalla, P. Jolly, N. Formisano, P. Estrela, Introduction to biosensors, Essays in Biochemistry. 60 (2016), 1-8. doi:10.1042/EBC20150001.
  • P. Jolly, N. Formisano, P. Estrela, DNA aptamer-based detection of prostate cancer, Chemical Papers. 69 (2015), 77-89. doi:10.1515/CHEMPAP-2015-0025.
  • B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, J. Robbens, Recent advances in recognition elements of food and environmental biosensors: A review, Biosensors and Bioelectronics. 26 (2010), 1178-1194. doi: 10.1016/J.BIOS.2010.07.033.
  • M. Bhattu, M. Verma, D. Kathuria, Recent advancements in the detection of organophosphate pesticides: a review, Analytical Methods. 13 (2021), 4390-4428. doi:10.1039/D1AY01186C.
  • M. Kesik, F. Ekiz Kanik, J. Turan, M. Kolb, S. Timur, M. Bahadir, L. Toppare, An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides, Sensors and Actuators B: Chemical. 205 (2014), 39-49. doi: 10.1016/J.SNB.2014.08.058.
  • A. Vinotha Alex, A. Mukherjee, Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection, Microchemical Journal. 161 (2021), 105779. doi: 10.1016/J.MICROC.2020.105779.
  • H. Celik, S. Soylemez, An Electrochemical Acetylcholinesterase Biosensor Based on Fluorene(bisthiophene) Comprising Polymer for Paraoxon Detection, Electroanalysis. 35 (2023), e202200271. doi:10.1002/ELAN.202200271.
  • H. Parham, N. Rahbar, Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode, Journal of Hazardous Materials. 177 (2010), 1077-1084. doi: 10.1016/J.JHAZMAT.2010.01.031.
  • A.S. Soğancı, A. Orman, The Influence of Polypropylene Fiber on High and Low Plasticity Clay, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 6 (2024), 178-187. doi:10.47112/NEUFMBD.2024.41.
  • H. Lin, H. Bai, Z. Yang, Q. Shen, M. Li, Y. Huang, F. Lv, S. Wang, Conjugated polymers for biomedical applications, Chemical Communications. 58 (2022), 7232-7244. doi:10.1039/D2CC02177C.
  • K. Çetin, K. Şarkaya, B. Kavakcioğlu, M. Bilgileri, M. Geçmişi, Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 267-277. doi:10.47112/NEUFMBD.2023.24.
  • M. Ali Kamyabi, N. Hajari, A.P.F. Turner, A. Tiwari, A high-performance glucose biosensor using covalently immobilised glucose oxidase on a poly(2,6-diaminopyridine) /carbon nanotube electrode, Talanta. 116 (2013), 801-808. doi: 10.1016/J.TALANTA.2013.07.068.
  • T. Ahuja, I.A. Mir, D. Kumar, Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials. 28 (2007), 791-805. doi: 10.1016/J.BIOMATERIALS.2006.09.046.
  • J.C. Vidal, E. Garcia-Ruiz, J.R. Castillo, Recent Advances in Electropolymerized Conducting Polymers in Amperometric Biosensors, Microchimica Acta. 143 (2003), 93-111. doi:10.1007/S00604-003-0067-4.
  • W. Schuhmann, Conducting polymer based amperometric enzyme electrodes, Mikrochimica Acta. 121 (1995), 1-29. doi:10.1007/BF01248237/METRICS.
  • S. Soylemez, M. Kesika, L. Toppare, Biosensing Devices: Conjugated Polymer Based Scaffolds. 2019, p. 386, https://hdl.handle.net/11511/47790.
  • D. Tuncel, H.V. Demir, Conjugated polymer nanoparticles, Nanoscale. 2 (2010), 484-494. doi:10.1039/B9NR00374F.
  • İ. Akin, E. Zor, H. Bi̇ngöl, S. Yazar, C. Author, N. Erbakan Üniversitesi, A. Keleşoğlu Eğitim Fakültesi, M. ve Fen Bilimleri Eğitimi Bölümü, GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 38-52. doi:10.47112/NEUFMBD.2023.8.
  • J.E. Millstone, D.F.J. Kavulak, C.H. Woo, T.W. Holcombe, E.J. Westling, A.L. Briseno, M.F. Toney, J.M.J. Fréchet, Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles, Langmuir. 26 (2010), 13056-13061. doi: 10.1021 /LA1022938
  • J.A. Labastide, M. Baghgar, I. Dujovne, B.H. Venkatraman, D.C. Ramsdell, D. Venkataraman, M.D. Barnes, Time- and polarization-resolved photoluminescence of individual semicrystalline polythiophene (P3HT) nanoparticles, Journal of Physical Chemistry Letters. 2 (2011), 2089-2093. doi:10.1021/JZ20095 8X.
  • S. Kurbanoglu, S.C. Cevher, L. Toppare, A. Cirpan, S. Soylemez, Electrochemical biosensor based on three components random conjugated polymer with fullerene (C60), Bioelectrochemistry (Amsterdam, Netherlands). 147 (2022). doi:10.1016/J.BIOELECHEM.2022.108219.
  • A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Surface Technology. 20 (1983) 91-92.
  • Y. Qu, Q. Sun, F. Xiao, G. Shi, L. Jin, Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides, Bioelectrochemistry. 77 (2010), 139-144. doi:10.1016/J.BIOELECHEM.2009.08.001.
  • R. Dutta, P. Puzari, Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode, Biosensors and Bioelectronics. 52 (2014), 166-172. doi:10.1016/J.BIOS.2013.08.050.
  • H. Dzudzevic Cancar, S. Soylemez, Y. Akpinar, M. Kesik, S. Göker, G. Gunbas, M. Volkan, L. Toppare, A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides, ACS Applied Materials and Interfaces. 8 (2016), 8058-8067. doi:10.1021/ACSAMI.5B12383.
  • L.F. Loguercio, A. Thesing, P. Demingos, C.D.L. de Albuquerque, R.S.B. Rodrigues, A.G. Brolo, J.F.L. Santos, Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide, Sensors and Actuators B: Chemical. 339 (2021), 129875. doi: 10.1016/J.SNB.2021.129875.
  • D. Du, J. Ding, J. Cai, A. Zhang, Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan, Colloids and Surfaces B: Biointerfaces. 58 (2007), 145-150. doi: 10.1016/j.colsurfb.2007.03.006.
  • Y. Wang, Y. Cheng, N. Wu, Z. Zhang, Graphitic Carbon Nitride/Poly(3-hexylthiophene) Nanocomposites for the Photoelectrochemical Detection of H2O2in Living Cells, ACS Applied Nano Materials. 3 (2020), 8598-8603. doi: 10.1021/ACSANM.0C02114.
  • J. Jeong, M. Essafi, C. Lee, M. Haoues, M.F. Diouani, H. Kim, Y. Kim, Ultrasensitive detection of hazardous reactive oxygen species using flexible organic transistors with polyphenol-embedded conjugated polymer sensing layers, Journal of Hazardous Materials. 355 (2018), 17-24. doi:10.1016/J.J HAZMAT.2018.04.063.
  • S. Sharma, D. Kar, P.D. Khanikar, A. Moudgil, P. Mishra, S. Das, Hybrid MoSe 2 /P3HT Transistor for Real-Time Ammonia Sensing in Biofluids, ACS Applied Materials & Interfaces. 16 (2024), 30648-30657. doi:10.1021/acsami.4c02352.
  • M. Xiao, Q. Xiong, C. Yang, H. Deng, R. Yuan, Y. Yuan, Highly efficient photocathodic cascade material for constructing sensitive photoelectrochemical biosensor, Analytica Chimica Acta. 1272 (2023), 341436. doi: 10.1016/J.ACA.2023.341436.
  • N. Elgiddawy, S. Ren, A. Yassar, A. Louis-Joseph, H. Sauriat-Dorizon, W.M.A. El Rouby, A.O. El-Gendy, A.A. Farghali, H. Korri-Youssoufi, Dispersible Conjugated Polymer Nanoparticles as Biointerface Materials for Label-Free Bacteria Detection, ACS Applied Materials & Interfaces. 12 (2020) 39979-39990. doi:10.1021/acsami.0c08305.
  • R. Singhal, A. Chaubey, K. Kaneto, W. Takashima, B.D. Malhotra, Poly-3-hexyl thiophene Langmuir-Blodgett films for application to glucose biosensor, Biotechnology, and Bioengineering. 85 (2004), 277-282. doi:10.1002/BIT.10869.
  • P. Seshadri, K. Manoli, N. Schneiderhan-Marra, U. Anthes, P. Wierzchowiec, K. Bonrad, C. Di Franco, L. Torsi, Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor, Biosensors and Bioelectronics. 104 (2018), 113-119. doi: 10.1016/j.bios.2017.12.041.
  • K.-H. Wang, W.-P. Hsu, L.-H. Chen, W.-D. Lin, Y.-L. Lee, Extensibility effect of poly(3-hexylthiophene) on the glucose sensing performance of mixed poly(3-hexylthiophene)/octadecylamine/glucose oxidase Langmuir-Blodgett films, Colloids and Surfaces B: Biointerfaces. 155 (2017), 104-110. doi: 10.1016/j.colsurfb.2017.04.006.
  • S.K. Sharma, R. Singhal, B.D. Malhotra, N. Sehgal, A. Kumar, Lactose biosensor based on Langmuir–Blodgett films of poly (3-hexyl thiophene), Biosensors and Bioelectronics. 20 (2004), 651-657. doi: 10.1016/j.bios.2004.03.020.
  • H. Runfang, Y. Yangfan, L. Leilei, J. Jianlong, Z. Qiang, D. Lifeng, S. Shengbo, L. Qiang, P3HT-based organic field effect transistor for low-cost, label-free detection of immunoglobulin G, Journal of Biotechnology. 359 (2022), 75-81. doi: 10.1016/j.jbiotec.2022.09.022.
  • D. Jin, Q. Xu, Y. Wang, X. Hu, A derivative photoelectrochemical sensing platform for herbicide acetochlor based on TiO2–poly (3-hexylthiophene) –ionic liquid nanocomposite film modified electrodes, Talanta. 127 (2014), 169-174. doi: 10.1016/j.talanta.2014.01.058.
  • N. Elgiddawy, S. Ren, W. Ghattas, W.M.A. El Rouby, A.O. El-Gendy, A.A. Farghali, A. Yassar, H. Korri-Youssoufi, Antimicrobial Activity of Cationic Poly(3-hexylthiophene) Nanoparticles Coupled with Dual Fluorescent and Electrochemical Sensing: Theragnostic Prospect, Sensors. 21 (2021), 1715. doi:10.3390/s21051715.
  • C. Bertoni, P. Naclerio, E. Viviani, S. Dal Zilio, S. Carrato, A. Fraleoni-Morgera, Nanostructured P3HT as a Promising Sensing Element for Real-Time, Dynamic Detection of Gaseous Acetone, Sensors. 19 (2019), 1296. doi:10.3390/s19061296.
  • K.-X. Han, C.-C. Wu, W.-F. Hsu, W. Chien, C.-F. Yang, Preparation of ultrafast ammonia sensor based on cross-linked ZnO nanorods coated with poly(3-hexylthiophene), Synthetic Metals. 299 (2023), 117449. doi: 10.1016/j.synthmet.2023.117449.
  • Y. Yang, H.E. Katz, Hybrid of P3HT and ZnO@GO nanostructured particles for increased NO 2 sensing response, Journal of Materials Chemistry C. 5 (2017), 2160-2166. doi:10.1039/C6TC04908G.
  • J. Ahmed, M. Faisal, S.A. Alsareii, M. Jalalah, F.A. Harraz, A novel gold-decorated porous silicon-poly(3-hexylthiophene) ternary nanocomposite as a highly sensitive and selective non-enzymatic dopamine electrochemical sensor, Journal of Alloys and Compounds. 931 (2023), 167403. doi:10.1016/j.j allcom.2022.167403.
There are 47 citations in total.

Details

Primary Language English
Subjects Sensor Technology, Electrochemistry, Polymer Technologies
Journal Section Articles
Authors

Dilara Yeniterzi This is me 0000-0003-2751-598X

Dilek Soyler 0000-0003-3937-5830

Saniye Söylemez 0000-0002-8955-133X

Publication Date August 31, 2025
Submission Date July 22, 2024
Acceptance Date December 8, 2024
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Yeniterzi, D., Soyler, D., & Söylemez, S. (2025). Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(2), 294-308.
AMA Yeniterzi D, Soyler D, Söylemez S. Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection. NEJSE. August 2025;7(2):294-308.
Chicago Yeniterzi, Dilara, Dilek Soyler, and Saniye Söylemez. “Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 2 (August 2025): 294-308.
EndNote Yeniterzi D, Soyler D, Söylemez S (August 1, 2025) Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 2 294–308.
IEEE D. Yeniterzi, D. Soyler, and S. Söylemez, “Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection”, NEJSE, vol. 7, no. 2, pp. 294–308, 2025.
ISNAD Yeniterzi, Dilara et al. “Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/2 (August2025), 294-308.
JAMA Yeniterzi D, Soyler D, Söylemez S. Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection. NEJSE. 2025;7:294–308.
MLA Yeniterzi, Dilara et al. “Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 2, 2025, pp. 294-08.
Vancouver Yeniterzi D, Soyler D, Söylemez S. Design and Development of Conjugated Polymer Nanoparticles-Based Biosensor for Pesticide Detection. NEJSE. 2025;7(2):294-308.