Development of IrO2 Nanoparticles-Based Lateral Flow Immunosensor for Determination of Parathyroid Hormone
Year 2025,
Volume: 7 Issue: 2, 286 - 293, 31.08.2025
Eda Gümüş
,
Haluk Bingöl
,
Erhan Zor
Abstract
The conveniences that biosensors bring to our lives pave the way for new studies that will enable biosensor technology to develop day by day. Qualitative and quantitative analyses are conducted in many areas with optical sensors. Among these areas, hormone tests, which are important in terms of health, also attract attention. This study aims to detect parathyroid hormone (PTH), which has an important role in some metabolic activities by maintaining calcium balance in the blood, by paper-based lateral flow analysis. PTH levels in the blood are important for the diagnosis of many parathyroid-related diseases and cancer. PTH was determined by the developed iridium oxide nanoparticles-based (IrO2NPs) LFA. At the same time, this is the first study to develop an LFA for the detection of PTH using IrO2NPs. The limit of detection and quantification (LOD and LOQ) of IrO2NPs-based LFA designed for PTH determination were calculated as 3.92 ng/mL and 11.88 ng/mL, respectively.
Supporting Institution
Necmettin Erbakan University, Scientific Research Projects Coordination Unit (NEU-BAP)
Thanks
Authors thanks to Necmettin Erbakan University, Scientific Research Projects Coordination Unit (NEU-BAP) for financial support (201210004).
References
-
Y. Nie, J. Li, Y. Liu, Q. Zhang, Q. Ma, A visual FRET immunofluorescent biosensor for ratiometric parathyroid hormone (1–84) antigen Point-of-Care detection, Journal of Fluorescence. 30 (2020), 329–334. doi:10.1007/s10895-020-02502-5
-
J.C.P. Souberbielle, H. Roth, D.P. Fouque, Parathyroid hormone measurement in CKD, Kidney International. 77 (2009), 93–100. doi:10.1038/ki.2009.374
-
J.H. Brossard, R. Lepage, H. Cardinal, L. Roy, L. Rousseau, C. Dorais, P. D’Amour, Influence of glomerular filtration rate on non-(1-84) parathyroid hormone (PTH) detected by intact PTH assays, Clinical Chemistry. 46 (2000), 697–703. doi:10.1093/clinchem/46.5.697
-
B. Bayraktar, T. Uzun, E. Tekce, V. Aksakal, A.A: Kılınç, Kemik Metabolizmasının Hormonal Regülasyonu, in: Kırmızı, B., İşigüzel, B. (Ed.) Türkiye Vizyonu Multidispliner Çalışmalar, 2019.
-
V.L. Venkatraman, R.K. Reddy, F. Zhang, D. Evans, B. Ulrich, S. Prasad, Iridium oxide nanomonitors: Clinical diagnostic devices for health monitoring systems, Biosensors and Bioelectronics. 24 (2009), 3078–3083. doi:10.1016/j.bios.2009.03.029.
-
B.K. Tekçe, H. Tekçe, Kronik böbrek hastalarında iki cihazın intakt paratiroid hormon ölçümünün karşılaştırılması, Türk Klinik Biyokimya Dergisi. 13 (2015), 21–28.
-
S. Li, Y. Liu, Q. Ma, A novel polydopamine electrochemiluminescence organic nanoparticle-based biosensor for parathyroid hormone detection, Talanta. 202 (2019), 540–545. doi:10.1016/j.talanta.2019.05.022.
-
H.M. Özcan, K. Yildiz, C. Çakar, T. Aydin, E. Asav, A. Sağiroğlu, M.K. Sezgintürk, Ultrasensitive impedimetric biosensor fabricated by a new immobilisation technique for parathyroid hormone, Appl. Biochem. Biotechnol. 176 (2015), 1251–1262.
-
J.F. Aloia, M. Feuerman, J.K. Yeh, Reference range for serum parathyroid hormone, Endocrine Practice.12 (2006), 137–144. doi:10.4158/EP.12.2.137.
-
M.N. Ohe, R.O. Santos, I.S. Kunii, M. Abrahão, O. Cervantes, A.B. Carvalho, M. Lazaretti-Castro, J.G.H. Vieira, Utilidade da medida de PTH intra-operatório no tratamento cirúrgico do hiperparatiroidismo primário e secundário: análise de 109 casos, Arquivos Brasileiros De Endocrinologia & Metabologia. 50 (2006), 869–875. doi:10.1590/S0004-27302006000500007.
-
J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner, J. Joung, J.J. Collins, F. Zhang, Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6, Science. 360 (2018), 439–444. doi:10.1126/science.aaq0179.
-
D. Zhang, L. Huang, B. Liu, E. Su, H.Y. Chen, Z. Gu, X. Zhao, Quantitative detection of multiplex cardiac biomarkers with encoded SERS nanotags on a single T line in lateral flow assay, Sensors Actuators, B Chemical. 277 (2018), 502–509. doi:10.1016/j.snb.2018.09.044.
-
X. Mao, W. Wang, T.E. Du, Rapid quantitative immunochromatographic strip for multiple proteins test, Sensors Actuators, B Chemical. 186 (2013), 315–320. doi:10.1016/j.snb.2013.05.083.
-
J. Singh, S. Sharma, S. Nara, Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water, Food Chemistry.170 (2015), 470–483. doi:10.1016/j.foodchem.2014.08.092.
-
J. Hu, S.Q. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, Advances in paper-based point-of-care diagnostics, Biosensors and Bioelectronics. 54 (2013), 585–597. doi:10.1016/j.bios.2013.10.075.
-
K.M. Koczula, A. Gallotta, Lateral flow assays, Essays in Biochemistry. 60 (2016), 111–120. doi:10.1042/EBC20150012.
-
A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra, Iron oxide nanoparticles-chitosan composite based glucose biosensor, Biosensors and Bioelectronics. 24 (2008), 676–683. doi:10.1016/j.bios.2008.06.032.
-
D. Quesada-González, A. Merkoçi, Nanoparticle-based lateral flow biosensors, Biosensors and Bioelectronics.73 (2015), 47–63. doi:10.1016/j.bios.2015.05.050.
-
J. Lim, D. Park, S. Seo Jeon, C.-W. Roh, J. Choi, D. Yoon, M. Park, H. Jung, H. Lee, J. Lim, D. Park, S.S. Jeon, C. Roh, J. Choi, H. Lee, D. Yoon, M. Park, H. Jung, Ultrathin IrO2 nanoneedles for electrochemical water oxidation, Advanced Functional Materials. 28 (2018), 1704796. doi:10.1002/ADFM.201704796.
-
N. Liu, Z. Duan, Q. Zhang, J. Guan, Insights into active species of ultrafine iridium oxide nanoparticle electrocatalysts in hydrogen/oxygen evolution reactions, Chemical Engineering Journal. 419 (2021), 129567. doi:10.1016/J.CEJ.2021.129567.
-
H. Zhang, L.X. Zhang, H. Zhong, S. Niu, C. Ding, S. Lv, Iridium oxide nanoparticles-based theranostic probe for in vivo tumor imaging and synergistic chem/photothermal treatments of cancer cells, Chemical Engineering Journal. 430 (2022), 132675. doi:10.1016/J.CEJ.2021.132675.
-
X. Yuan, J. Cen, X. Chen, Z. Jia, X. Zhu, Y. Huang, G. Yuan, J. Liu, Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer, Journal of Colloid and Interface Science. 605 (2022), 851–862. doi:10.1016/J.JCIS.2021.07.136.
-
S. Zhao, T. Bu, K. Yang, Z. Xu, F. Bai, K. He, L. Li, L. Wang, Immunochromatographic assay based on polydopamine-decorated iridium oxide nanoparticles for the rapid detection of salbutamol in food samples, ACS Applied Materials & Interfaces. 13 (2021), 28899–28907.
-
D. Quesada-González, A. Sena-Torralba, W.P. Wicaksono, A. de la Escosura-Muñiz, T.A. Ivandini, A. Merkoçi, Iridium oxide (IV) nanoparticle-based lateral flow immunoassay, Biosensors and Bioelectronics. 132 (2019), 132–135. doi:10.1016/j.bios.2019.02.049.
-
L. Rivas, A. de la Escosura-Muñiz, J. Pons, A. Merkoçi, alzheimer disease biomarker detection through electrocatalytic water oxidation ınduced by Iridium oxide nanoparticles, Electroanalysis. 26 (2014), 1287–1294. doi:10.1002/elan.201400027.
-
Y. Zhang, J. Wang, S. Gong, D. Xu, Y. Mo, Straw mulching enhanced the photosynthetic capacity of field maize by increasing the leaf N use efficiency, Agricultural Water Management. 218 (2019), 60–67. doi:10.1016/j.agwat.2019.03.023.
-
D. Finkelstein-Shapiro, M. Fournier, D.D. Méndez-Hernández, C. Guo, M. Calatayud, T.A. Moore, A.L. Moore, D. Gust, J.L. Yarger, Understanding iridium oxide nanoparticle surface sites by their interaction with catechol, Physical Chemistry Chemical Physics. 19 (2017) ,16151–16158. doi:10.1039/C7CP01516J.
-
D. Xu, P. Diao, T. Jin, Q. Wu, X. Liu, X. Guo, H. Gong, F. Li, M. Xiang, Y. Ronghai, Iridium oxide nanoparticles and Iridium/Iridium Oxide nanocomposites: Photochemical fabrication and application in catalytic reduction of 4-Nitrophenol, ACS Applied Materials & Interfaces. 7 (2015), 16738–16749. doi:10.1021/acsami.5b04504.
-
Y. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity, The Journal of Physical Chemistry Letters. 2 (2011), 402–406. doi:10.1021/jz200051c.
-
A. Harriman, J.M. Thomas, G.R. Milward, Catalytic and structural properties of iridium-iridium dioxide colloids, New Journal of Chemistry. 11 (1987), 757–762.
-
J.C. Hidalgo-Acosta, M.A. Méndez, M.D. Scanlon, H. Vrubel, V. Amstutz, W. Adamiak, M. Opallo, H.H. Girault, Catalysis of water oxidation in acetonitrile by iridium oxide nanoparticles, Chemical Science. 6 (2015), 1761–1769. doi:10.1039/c4sc02196g.
Paratiroid Hormon Tayinine Yönelik IrO2 Nanopartikül Tabanlı Yatay Akış İmmünosensör Geliştirilmesi
Year 2025,
Volume: 7 Issue: 2, 286 - 293, 31.08.2025
Eda Gümüş
,
Haluk Bingöl
,
Erhan Zor
Abstract
Biyosensörlerin hayatımıza getirdiği kolaylıklar, biyosensör teknolojisinin gün geçtikçe gelişmesini sağlayacak yeni çalışmaların önünü açmaktadır. Optik sensörler ile birçok alanda kalitatif ve kantitatif analizler yapılmaktadır. Bu alanlar arasında sağlık sektöründe önemli olan hormon testleri de dikkat çekmektedir. Bu çalışmada, kandaki kalsiyum dengesini koruyarak bazı metabolik faaliyetlerde önemli bir role sahip olan paratiroid hormonunun (PTH) kağıt bazlı yatay akış testi (LFA) ile tayin edilmesi amaçlanmıştır. Kandaki PTH seviyesi birçok paratiroid kaynaklı hastalık ve kanser teşhisi için önem arz etmektedir. Geliştirilen iridyum oksit nanopartikül (IrO2NPs) esaslı LFA ile PTH tayini ve tespiti gerçekleştirilmiştir. Aynı zamanda, PTH tespiti için IrO2NPs kullanılarak LFA geliştirilen ilk çalışmadır. PTH tayini için tasarlanan IrO2NPs bazlı LFA’nın teşhis ve tayin alt sınırı (LOD ve LOQ) sırasıyla 3,92 ng/mL ve 11,88 ng/mL olarak hesaplanmıştır.
Supporting Institution
Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (NEÜ-BAP)
Thanks
Yazarlar, maddi desteklerinden dolayı Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi'ne (NEÜ-BAP) teşekkür eder (201210004).
References
-
Y. Nie, J. Li, Y. Liu, Q. Zhang, Q. Ma, A visual FRET immunofluorescent biosensor for ratiometric parathyroid hormone (1–84) antigen Point-of-Care detection, Journal of Fluorescence. 30 (2020), 329–334. doi:10.1007/s10895-020-02502-5
-
J.C.P. Souberbielle, H. Roth, D.P. Fouque, Parathyroid hormone measurement in CKD, Kidney International. 77 (2009), 93–100. doi:10.1038/ki.2009.374
-
J.H. Brossard, R. Lepage, H. Cardinal, L. Roy, L. Rousseau, C. Dorais, P. D’Amour, Influence of glomerular filtration rate on non-(1-84) parathyroid hormone (PTH) detected by intact PTH assays, Clinical Chemistry. 46 (2000), 697–703. doi:10.1093/clinchem/46.5.697
-
B. Bayraktar, T. Uzun, E. Tekce, V. Aksakal, A.A: Kılınç, Kemik Metabolizmasının Hormonal Regülasyonu, in: Kırmızı, B., İşigüzel, B. (Ed.) Türkiye Vizyonu Multidispliner Çalışmalar, 2019.
-
V.L. Venkatraman, R.K. Reddy, F. Zhang, D. Evans, B. Ulrich, S. Prasad, Iridium oxide nanomonitors: Clinical diagnostic devices for health monitoring systems, Biosensors and Bioelectronics. 24 (2009), 3078–3083. doi:10.1016/j.bios.2009.03.029.
-
B.K. Tekçe, H. Tekçe, Kronik böbrek hastalarında iki cihazın intakt paratiroid hormon ölçümünün karşılaştırılması, Türk Klinik Biyokimya Dergisi. 13 (2015), 21–28.
-
S. Li, Y. Liu, Q. Ma, A novel polydopamine electrochemiluminescence organic nanoparticle-based biosensor for parathyroid hormone detection, Talanta. 202 (2019), 540–545. doi:10.1016/j.talanta.2019.05.022.
-
H.M. Özcan, K. Yildiz, C. Çakar, T. Aydin, E. Asav, A. Sağiroğlu, M.K. Sezgintürk, Ultrasensitive impedimetric biosensor fabricated by a new immobilisation technique for parathyroid hormone, Appl. Biochem. Biotechnol. 176 (2015), 1251–1262.
-
J.F. Aloia, M. Feuerman, J.K. Yeh, Reference range for serum parathyroid hormone, Endocrine Practice.12 (2006), 137–144. doi:10.4158/EP.12.2.137.
-
M.N. Ohe, R.O. Santos, I.S. Kunii, M. Abrahão, O. Cervantes, A.B. Carvalho, M. Lazaretti-Castro, J.G.H. Vieira, Utilidade da medida de PTH intra-operatório no tratamento cirúrgico do hiperparatiroidismo primário e secundário: análise de 109 casos, Arquivos Brasileiros De Endocrinologia & Metabologia. 50 (2006), 869–875. doi:10.1590/S0004-27302006000500007.
-
J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner, J. Joung, J.J. Collins, F. Zhang, Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6, Science. 360 (2018), 439–444. doi:10.1126/science.aaq0179.
-
D. Zhang, L. Huang, B. Liu, E. Su, H.Y. Chen, Z. Gu, X. Zhao, Quantitative detection of multiplex cardiac biomarkers with encoded SERS nanotags on a single T line in lateral flow assay, Sensors Actuators, B Chemical. 277 (2018), 502–509. doi:10.1016/j.snb.2018.09.044.
-
X. Mao, W. Wang, T.E. Du, Rapid quantitative immunochromatographic strip for multiple proteins test, Sensors Actuators, B Chemical. 186 (2013), 315–320. doi:10.1016/j.snb.2013.05.083.
-
J. Singh, S. Sharma, S. Nara, Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water, Food Chemistry.170 (2015), 470–483. doi:10.1016/j.foodchem.2014.08.092.
-
J. Hu, S.Q. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, Advances in paper-based point-of-care diagnostics, Biosensors and Bioelectronics. 54 (2013), 585–597. doi:10.1016/j.bios.2013.10.075.
-
K.M. Koczula, A. Gallotta, Lateral flow assays, Essays in Biochemistry. 60 (2016), 111–120. doi:10.1042/EBC20150012.
-
A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra, Iron oxide nanoparticles-chitosan composite based glucose biosensor, Biosensors and Bioelectronics. 24 (2008), 676–683. doi:10.1016/j.bios.2008.06.032.
-
D. Quesada-González, A. Merkoçi, Nanoparticle-based lateral flow biosensors, Biosensors and Bioelectronics.73 (2015), 47–63. doi:10.1016/j.bios.2015.05.050.
-
J. Lim, D. Park, S. Seo Jeon, C.-W. Roh, J. Choi, D. Yoon, M. Park, H. Jung, H. Lee, J. Lim, D. Park, S.S. Jeon, C. Roh, J. Choi, H. Lee, D. Yoon, M. Park, H. Jung, Ultrathin IrO2 nanoneedles for electrochemical water oxidation, Advanced Functional Materials. 28 (2018), 1704796. doi:10.1002/ADFM.201704796.
-
N. Liu, Z. Duan, Q. Zhang, J. Guan, Insights into active species of ultrafine iridium oxide nanoparticle electrocatalysts in hydrogen/oxygen evolution reactions, Chemical Engineering Journal. 419 (2021), 129567. doi:10.1016/J.CEJ.2021.129567.
-
H. Zhang, L.X. Zhang, H. Zhong, S. Niu, C. Ding, S. Lv, Iridium oxide nanoparticles-based theranostic probe for in vivo tumor imaging and synergistic chem/photothermal treatments of cancer cells, Chemical Engineering Journal. 430 (2022), 132675. doi:10.1016/J.CEJ.2021.132675.
-
X. Yuan, J. Cen, X. Chen, Z. Jia, X. Zhu, Y. Huang, G. Yuan, J. Liu, Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer, Journal of Colloid and Interface Science. 605 (2022), 851–862. doi:10.1016/J.JCIS.2021.07.136.
-
S. Zhao, T. Bu, K. Yang, Z. Xu, F. Bai, K. He, L. Li, L. Wang, Immunochromatographic assay based on polydopamine-decorated iridium oxide nanoparticles for the rapid detection of salbutamol in food samples, ACS Applied Materials & Interfaces. 13 (2021), 28899–28907.
-
D. Quesada-González, A. Sena-Torralba, W.P. Wicaksono, A. de la Escosura-Muñiz, T.A. Ivandini, A. Merkoçi, Iridium oxide (IV) nanoparticle-based lateral flow immunoassay, Biosensors and Bioelectronics. 132 (2019), 132–135. doi:10.1016/j.bios.2019.02.049.
-
L. Rivas, A. de la Escosura-Muñiz, J. Pons, A. Merkoçi, alzheimer disease biomarker detection through electrocatalytic water oxidation ınduced by Iridium oxide nanoparticles, Electroanalysis. 26 (2014), 1287–1294. doi:10.1002/elan.201400027.
-
Y. Zhang, J. Wang, S. Gong, D. Xu, Y. Mo, Straw mulching enhanced the photosynthetic capacity of field maize by increasing the leaf N use efficiency, Agricultural Water Management. 218 (2019), 60–67. doi:10.1016/j.agwat.2019.03.023.
-
D. Finkelstein-Shapiro, M. Fournier, D.D. Méndez-Hernández, C. Guo, M. Calatayud, T.A. Moore, A.L. Moore, D. Gust, J.L. Yarger, Understanding iridium oxide nanoparticle surface sites by their interaction with catechol, Physical Chemistry Chemical Physics. 19 (2017) ,16151–16158. doi:10.1039/C7CP01516J.
-
D. Xu, P. Diao, T. Jin, Q. Wu, X. Liu, X. Guo, H. Gong, F. Li, M. Xiang, Y. Ronghai, Iridium oxide nanoparticles and Iridium/Iridium Oxide nanocomposites: Photochemical fabrication and application in catalytic reduction of 4-Nitrophenol, ACS Applied Materials & Interfaces. 7 (2015), 16738–16749. doi:10.1021/acsami.5b04504.
-
Y. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity, The Journal of Physical Chemistry Letters. 2 (2011), 402–406. doi:10.1021/jz200051c.
-
A. Harriman, J.M. Thomas, G.R. Milward, Catalytic and structural properties of iridium-iridium dioxide colloids, New Journal of Chemistry. 11 (1987), 757–762.
-
J.C. Hidalgo-Acosta, M.A. Méndez, M.D. Scanlon, H. Vrubel, V. Amstutz, W. Adamiak, M. Opallo, H.H. Girault, Catalysis of water oxidation in acetonitrile by iridium oxide nanoparticles, Chemical Science. 6 (2015), 1761–1769. doi:10.1039/c4sc02196g.