Research Article
BibTex RIS Cite

AI-Supported Automated Decision-Making in Public Administration: An Evaluation in the Context of Türkiye

Year 2025, Volume: 7 Issue: 1, 151 - 183, 30.06.2025

Abstract

This study examines the use of artificial intelligence (AI)-based automated decision-making (ADM) systems in public administration in Türkiye. The main objective of the research is to identify the types of ADM systems under which AI applications used in Türkiye’s public administration can be classified, to analyze how these systems align with or diverge from ADM types defined in international literature, and to ultimately develop recommendations for the advancement of ADM systems in Türkiye. The research was conducted using a qualitative method consisting of a semi-systematic literature review and descriptive case analysis. In the first phase, a conceptual framework was developed by reviewing international literature and official documents; in the second phase, selected AI applications in public institutions in Türkiye were evaluated through case analysis. The findings reveal that although AI applications are becoming more widespread in Türkiye’s public administration, ADM systems still face significant challenges regarding transparency, accountability, and legal frameworks. The study highlights the importance of regulatory and strategic improvements in these areas and offers a set of recommendations and policy guidelines for the development of ADM systems in Türkiye.

References

  • Aguirre, S., & Rodriguez, A. (2017, September). Automation of a business process using robotic process automation (RPA): A case study. Applied Computer Sciences in Engineering: 4th Workshop on Engineering Applications, WEA 2017, Cartagena, Colombia, September 27–29, 2017, Proceedings 4 (pp. 65–71). Springer International Publishing.
  • Akman, E., & Çetin, M. (2019, December). Yeni kamu yönetimi anlayışının bir yansıması olarak Dijital Dönüşüm Ofisi. IV. Uluslararası Stratejik ve Sosyal Araştırmalar Sempozyumu (ISASOR 2019), Burdur, Türkiye, 5-6 Aralık, 2019, (pp. 223–231). https://www.isasor.org/ISASOR%20IV%20ABSTRACT%20BOOK.pdf
  • Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y. (2019). Transforming the communication between citizens and government through AI-guided chatbots. Government information quarterly, 36(2), 358-367. https://doi.org/10.1016/j.giq.2018.10.001
  • Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2022). Machine bias. In J. Angwin, J. Larson, S. Mattu, & L. Kirchner (Eds.), Ethics of data and analytics (pp. 254-264). Auerbach Publications. https://doi.org/10.1201/9781003278290
  • Araujo, T., Helberger, N., Kruikemeier, S., & De Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & society, 35(3), 611-623. https://doi.org/10.1007/s00146-019-00931-w
  • Asula, M., Makke, J., Freienthal, L., Kuulmets, H. A., & Sirel, R. (2021). Kratt: developing an automatic subject indexing tool for the National Library of Estonia. Cataloging & Classification Quarterly, 59(8), 775-793. https://doi.org/10.1080/01639374.2021.1998283
  • Babšek, M., Ravšelj, D., Umek, L., & Aristovnik, A. (2025). Artificial intelligence adoption in public administration: An overview of top-cited articles and practical applications. AI, 6(3), 44. https://doi.org/10.3390/ai6030044
  • Bayrakcı, E., & Koçman, M. A. (2023). Bilgi Güvenliği ve Elektronik Harp. Necmettin Erbakan Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 5(Özel Sayı), 184-206. https://doi.org/10.51124/jneusbf.2023.56
  • Bekker, S. (2020). Fundamental rights in digital welfare states: The case of SyRI in the Netherlands. In Netherlands yearbook of international law 2019: Yearbooks in international law: History, function and future (pp. 289-307). The Hague: TMC Asser Press.
  • Birleşik Krallık Ulusal Denetim Ofisi (2022). Managing tax compliance following the pandemic. https://www.nao.org.uk/wp-content/uploads/2022/12/managing-tax-compliance-following-the-pandemic-report.pdf
  • Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at Work, National Bureau of Economic Research working paper 31161.
  • Busch, P. A. (2017, January). The role of contextual factors in the influence of ICT on street-level discretion. Proceedings of the 50th Hawaii International Conference on System Sciences, HICSS, Hawaii, January 4-7, Proceedings (pp. 2963-2972).
  • Bygstad, B. (2017). Generative innovation: a comparison of lightweight and heavyweight IT. Journal of information technology, 32(2), 180-193. https://doi.org/10.1057/jit.2016.15
  • Carter, S., & Nielsen, M. (2017). Using artificial intelligence to augment human intelligence. Distill, 2(12). https://doi.org/10.23915/distill.00009
  • Closs-Davies, S., Burkinshaw, L., & Frecknall-Hughes, J. (2024). Is the HMRC charter fit for purpose? Experiences of tax practitioners and vulnerable citizens. British Tax Review, 2024(2), 304-326.
  • Cumhurbaşkanlığı Dijital Dönüşüm Ofisi (CBDDO) (2021). Ulusal Yapay Zekâ Stratejisi (UYZS) 2021-2025. https://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021-2025.pdf
  • Cumhurbaşkanlığı Dijital Dönüşüm Ofisi (CBDDO) (2024). Hakkımızda. T.C. Dijital Dönüşüm Ofisi. https://cbddo.gov.tr/hakkimizda/
  • Cumhurbaşkanlığı Dijital Dönüşüm Ofisi (CBDDO) (2025). Kamuda Yapay Zekâ Dönüşümü Projesi, T.C. Dijital Dönüşüm Ofisi https://cbddo.gov.tr/projeler/kayzed/
  • Çekici, O., & Bayrakcı, E. (2024). Yoksullukla Baş Etmede Sürdürülebilir Tarım Politikaları. Necmettin Erbakan Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 6(1), 87-100. https://doi.org/10.51124/jneusbf.2024.76
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (ÇSB) (2019). 2020-2023 Ulusal Akıllı Şehirler Stratejisi Eylem Planı. https://akillisehirler.gov.tr/wp-content/uploads/EylemPlani.pdf
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (ÇSB) (2024). 2024-2030 Ulusal Akıllı Şehirler Stratejisi Eylem Planı Taslağı. https://www.akillisehirler.gov.tr/wp-content/uploads/2023/12/Taslak-Eylem_Plani.pdf
  • Devlet Hava Meydanları İşletmesi (DHMİ) (2024). Devlet Hava Meydanları İşletmesi 2024 Yılı Faaliyet Raporu. https://www.dhmi.gov.tr/Lists/FaaliyetRaporlari/Attachments/25/54974_ faaliyetraporu2024.pdf
  • Dışişleri Bakanlığı (2025). Hızır yapay zekâ uygulaması. Hızır yapay zekâ uygulaması. http://www.konsolosluk.gov.tr/UseFulLinks/Index
  • Durmuş, N. K., & Erdem, İ. A. (2023). Vergi İdaresi 3.0: Yapay Zekâ Perspektifinden Bir İnceleme. Maliye Dergisi, 184, 225-253.
  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International journal of information management, 71, 102642.
  • E-Estonia (2020). New e-Estonia factsheet: National AI “Kratt” Strategy. https://e-estonia.com/new-e-estonia-factsheet-national-ai-kratt-strategy/
  • Engel, C., Linhardt, L. & Schubert, M. (2024). Code is law: how COMPAS affects the way the judiciary handles the risk of recidivism. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-024-09389-8 Ertel, W. (2024). Introduction to artificial intelligence. Springer Nature.
  • Etscheid, J. (2018). Automatisierungspotenziale in der Verwaltung. In R. Mohabbat Kar, B. Thapa, & P. Parycek (Eds.), (Un)berechenbar? Algorithmen und Automatisierung in Staat und Gesellschaft. Berlin.
  • Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin's Press.
  • European Union (EU) (2024). The EU Artificial Intelligence Act: The AI Act Explorer. https://artificialintelligenceact.eu/ai-act-explorer/
  • Gelir İdaresi Başkanlığı (GİB) (2025). Dijital Vergi Asistanı GİBİ. https://www.gib.gov.tr/node/170911
  • Gömleksiz, M. (2024). Kamu ve Yükseköğretim Ar-Ge Performansının Özel Sektör Ar-Ge Harcamalarına Etkisi: Seçilmiş OECD Ülkeleri Örneği, Necmettin Erbakan Üniversitesi Sustainable Welfare, 2(2), 96-113.
  • Grimmelikhuijsen, S. (2023). Explaining why the computer says no: Algorithmic transparency affects the perceived trustworthiness of automated decision‐making. Public Administration Review, 83(2), 241-262. https://doi.org/10.1111/puar.13483
  • Hazine ve Maliye Bakanlığı (2025). GİBİ uygulaması. T.C. Hazine ve Maliye Bakanlığı. https://www.gib.gov.tr/mobil-uygulamalar-0
  • HMRC (2019). Tackling tax avoidance, evasion and other forms of non-compliance, HM Report, ISBN 978-1-912809-45-5, PU2245. https://www.gov.uk/government/publications/tackling-tax-avoidance-evasion-and-other-forms-of-non-compliance
  • Houy, C., Hamberg, M., & Fettke, P. (2019, March). Robotic process automation in public administrations. In Digitalisierung von Staat und Verwaltung. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-685-5. Münster. 6.-7 March, 2019, (pp. 62-74). https://dl.gi.de/items/eaf373e1-36c9-4be1-ad8f-59de99deb30a
  • IRRC (2024). Uses of technology accross the Department. https://www.canada.ca/en/immigration-refugees-citizenship/corporate/transparency/digital-transparency-advanced-data-analytics/uses-technology.html ITU (2024). Forest Fires Support Decision System, Projects, https://www.itu.int/net4/wsis/stocktaking/Project/Projects/Details/17055725608247369
  • Juell-Skielse, G., Güner, E. O., & Han, S. (2022, September). Adoption of robotic process automation in the public sector: a survey study in Sweden. In Electronic Government: 21st IFIP WG 8.5 International Conference, EGOV 2022, Linköping, Sweden, September 6–8, 2022, (pp. , 336–352). Proceedings. Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-031-15086-9_22
  • Kişisel Verileri Koruma Kurumu (KVKK). (2016). 6698 Sayılı Kişisel Verilerin Korunması Kanunu. T.C. Resmî Gazete, 7 Nisan 2016. https://www.mevzuat.gov.tr/mevzuatmetin/1.5.6698.pdf
  • Kratt AI (2025). AI Use Cases, Kratt AI. https://www.kratid.ee/en/ai-use-cases
  • Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications policy, 44(6), 101976. https://doi.org/10.1016/j.telpol.2020.101976
  • Lahey Bölge Mahkemesi (2020). Case number: C-09-550982-HA ZA 18-388. [District Court of The Hague ruling invalidating SyRI].
  • Lindgren, I., Johansson, B., Söderström, F., & Toll, D. (2022, August). Why is it difficult to implement robotic process automation? Empirical cases from Swedish municipalities. In Electronic Government: 21st IFIP WG 8.5 International Conference, EGOV 2022, Linköping, Sweden, September 6–8, 2022, (pp. 353–368). Proceedings. Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-031-15086-9_23
  • Lindgren, I., Madsen, C. Ø., Hofmann, S., & Melin, U. (2019). Close encounters of the digital kind: A research agenda for the digitalization of public services. Government Information Quarterly, 36(3), 427–436. https://doi.org/10.1016/j.giq.2019.03.002
  • Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. Jossey-Bass.
  • Millî Eğitim Bakanlığı (MEB) (2025). Eba ve MEB asistan. T.C. Millî Eğitim Bakanlığı. https://www.meb.gov.tr/eba-asistan-uzaktan-egitimde-cevapsiz-soru-birakmayacak/haber/20829 /tr
  • Mökander, J., Morley, J., Taddeo, M., & Floridi, L. (2021). Ethics-based auditing of automated decision-making systems: Nature, scope, and limitations. Science and Engineering Ethics, 27(4), 44. https://doi.org/10.1007/s11948-021-00319-4
  • Orman Genel Müdürlüğü OGM (2025). Yangın Karar Destek Sistemi, Tanıtım Görseli https://yanginkarardestek.ogm.gov.tr/web/Images/ogm-ekran-en.jpg
  • Oxford Insights (2024). Government AI Readiness Index 2024. https://oxfordinsights.com/ai-readiness/ai-readiness-index/
  • Parycek, P., Schmid, V., & Novak, A. S. (2024). Artificial Intelligence (AI) and automation in administrative procedures: Potentials, limitations, and framework conditions. Journal of the Knowledge Economy, 15(2), 8390-8415. https://doi.org/10.1007/s13132-023-01433-3
  • Rachovitsa, A., & Johann, N. (2022). The human rights implications of the use of AI in the digital welfare state: Lessons learned from the Dutch SyRI case. Human Rights Law Review, 22(2), ngac010. https://doi.org/10.1093/hrlr/ngac010
  • Ramli, M. S. (2024). AI-Assisted Tax Authorities: Leveraging LLM, NLP, and ML for Efficient Tax Audit Reporting. Jurnal BPPK: Badan Pendidikan dan Pelatihan Keuangan, 17(3), 133-144.
  • Ranerup, A., & Henriksen, H. Z. (2019). Value positions viewed through the lens of automated decision-making: The case of social services. Government Information Quarterly, 36(4), 101377. https://doi.org/10.1016/j.giq.2019.05.004
  • Ranerup, A. & Henriksen, H.Z. (2020). Digital discretion: unpacking human and technological agency in automated decision making in Sweden’s social services. Social Science Computer Review, 40(2), 445–461. https://doi.org/10.1177/0894439320980434
  • Rehr, D., & Munteanu, D. (2021). The promise of robotic process automation for the public sector. Center for Business Civic Engagement, George Mason University. https://cbce.gmu.edu/wp-content/uploads/2021/06/The-Promise-of-RPA-For-The-Public-Sector.pdf
  • Reisman, D., Schultz, J., Crawford, K., & Whittaker, M. (2018). Algorithmic impact assessments: a practical Framework for Public Agency. AI Now.
  • Restrepo-Amariles, D. (2020). Algorithmic decision systems: automation and machine learning in the public administration. In W. Barfield (Ed.) The Cambridge Handbook of the Law of Algorithms. (pp. 273-300). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108680844.015
  • Roehl, U. B. (2022). Understanding automated decision-making in the public sector: a classification of automated, administrative decision-making. In G. Juell-Skielse, I. Lindgren, M. Åkesson (Eds.) Service Automation in the Public Sector: Concepts, Empirical Examples and Challenges (pp. 35-63). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-92644-1_3
  • Sağlık Bakanlığı (2025). NeyimVar? uygulaması, Sağlık Bakanlığı, https://neyimvar.gov.tr/giris
  • Salah, M., Abdelfattah, F., & Al Halbusi, H. (2023). Generative Artificial Intelligence (ChatGPT & Bard) in Public Administration Research: A Double-Edged Sword for Street-Level Bureaucracy Studies. International Journal of Public Administration, 1–7. https://doi.org/10.1080/01900692.2023.2274801
  • Snyder, H. (2019). Literature reviews as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339.
  • Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368–383. https://doi.org/10.1016/j.giq.2018.09.008
  • Suri, V. K., Elia, M., & van Hillegersberg, J. (2017, February). Software bots-the next frontier for shared services and functional excellence. Global Sourcing of Digital Services: Micro and Macro Perspectives. 11th Global Sourcing Workshop 2017, La Thuile, Italy, February 22-25, 2017, Revised Selected Papers 11 (pp. 81-94). Springer International Publishing
  • Tangi, L., Janssen, M., Benedetti, M., & Noci, G. (2021). Barriers and drivers of Artificial Intelligence adoption in public administrations: Evidence from a systematic literature review. Government Information Quarterly, 38(4), 101593. https://doi.org/10.1016/j.giq.2021.101593
  • Thomas, G. (2011). A Typology for the Case Study in Social Science Following a Review of Definition, Discourse, and Structure. Qualitative Inquiry, 17(6), 511–521. https://doi.org/10.1177/1077800411409884
  • Thomas, G. (2021). How to do your case study: A guide for students and researchers. 3rd ed., Sage.
  • Timmermann, D. (2020). Legal Tech-Anwendungen: Rechtswissenschaftliche Analyse und Entwicklung des Begriffs der algorithmischen Rechtsdienstleistung (3rd ed.). Nomos Verlag.
  • Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) (2023). KAMAG 1007 Kamu YZ Ekosistemi Proje Çağrısı. https://tubitak.gov.tr/sites/default/files/1776/1007-cbddo-2023-01_0.pdf
  • Türkiye Bilişim Derneği (TBD) (2024). Kamuda Yapay Zekâ Uygulamaları, Kamubib Çalışma Grubu Raporu, Kasım 2024, https://www.tbd.org.tr/pdf/kamubib-calisma-grubu/kamuda-yapay-zeka-uygulamalari-2024.pdf
  • Ulusal Siber Olaylara Müdahale Merkezi (USOM) (2025). USOM AR-GE Çalışmaları. https://www.usom.gov.tr/arge
  • Väisänen, M. (2022). Implementation of Robotic Process Automation, Case Study Palkeet.
  • Van Kimpren, F., de Bruijn, H., & Arnaboldi, M. (2023). Machine learning algorithms and public decision-making: A conceptual overview. In T. Rana & L. Parker (Eds.) The Routledge Handbook of Public Sector Accounting (pp. 124-138). Routledge.
  • Veale, M., & Brass, I. (2019). Administration by algorithm? Public management meets public sector machine learning. Public Money & Management, 39(5), 377–384. https://doi.org/10.1080/09540962.2019.1583101
  • Wihlborg, E., Larsson, H., & Hedström, K. (2016, January). “The Computer Says No!"--A Case Study on Automated Decision-Making in Public Authorities. 49th Hawaii international conference on system sciences (HICSS), Hawaai, January 5-8, 2016, (pp. 2903-2912). IEEE. https://www.computer.org/csdl/proceedings/hicss/2016/12OmNrMHOd6
  • Willcocks, L., Lacity, M., & Craig, A. (2017). Robotic process automation: strategic transformation lever for global business services? Journal of Information Technology Teaching Cases, 7(1), 17-28. https://doi.org/10.1057/s41266-016-0016-9
  • Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial Intelligence and the public sector—Applications and challenges. International Journal of Public Administration, 42(7), 596–615. https://doi.org/10.1080/01900692.2018.1498103
  • Yeung, K. (2018). Algorithmic regulation: A critical interrogation. Regulation & Governance, 12(4), 505–523. https://doi.org/10.1111/rego.12160
  • Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). Sage Publications. Zouridis, S., van Eck, M., & Bovens, M. (2020). Automated discretion. Information Polity, 25(4), 491–506. https://doi.org/10.3233/IP-190192

Kamu Yönetiminde Yapay Zekâ Destekli Otomatik Karar Verme: Türkiye Bağlamında Bir Değerlendirme

Year 2025, Volume: 7 Issue: 1, 151 - 183, 30.06.2025

Abstract

Bu çalışma Türkiye kamu yönetiminde yapay zekâ destekli otomatik karar verme sistemlerinin kullanımını incelemektedir. Çalışmanın temel amacı, Türkiye kamu yönetiminde kullanılan YZ uygulamalarının hangi tür OKV sistemleri kapsamında değerlendirilebileceğini belirlemek ve bu sistemlerin uluslararası literatürde tanımlanan OKV türleriyle hangi açılardan örtüştüğünü ya da ayrıştığını analiz etmek ve sonuç olarak OKV sistemlerinin Türkiye’de geliştirilmesi için öneriler geliştirmektir. Araştırma, yarı-sistematik literatür taraması ve betimleyici vaka analizinden oluşan nitel bir yöntemle yürütülmüştür. İlk aşamada, uluslararası literatür ve resmi belgeler incelenerek kavramsal bir çerçeve oluşturulmuş, ikinci aşamada ise Türkiye’de seçili kamu YZ uygulamaları vaka analizi yoluyla değerlendirilmiştir. Sonuç olarak, Türkiye’de YZ uygulamalarının kamu yönetiminde yaygınlaştığı ancak OKV sistemlerinin şeffaflık, denetim ve yasal çerçeve açısından eksiklikler barındırdığı tespit edilmiştir. Çalışma, bu alanlardaki düzenlemelerin ve stratejik geliştirmelerin önemine dikkat çekerek, Türkiye için öneri ve politika çerçevesi sunmaktadır.

References

  • Aguirre, S., & Rodriguez, A. (2017, September). Automation of a business process using robotic process automation (RPA): A case study. Applied Computer Sciences in Engineering: 4th Workshop on Engineering Applications, WEA 2017, Cartagena, Colombia, September 27–29, 2017, Proceedings 4 (pp. 65–71). Springer International Publishing.
  • Akman, E., & Çetin, M. (2019, December). Yeni kamu yönetimi anlayışının bir yansıması olarak Dijital Dönüşüm Ofisi. IV. Uluslararası Stratejik ve Sosyal Araştırmalar Sempozyumu (ISASOR 2019), Burdur, Türkiye, 5-6 Aralık, 2019, (pp. 223–231). https://www.isasor.org/ISASOR%20IV%20ABSTRACT%20BOOK.pdf
  • Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y. (2019). Transforming the communication between citizens and government through AI-guided chatbots. Government information quarterly, 36(2), 358-367. https://doi.org/10.1016/j.giq.2018.10.001
  • Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2022). Machine bias. In J. Angwin, J. Larson, S. Mattu, & L. Kirchner (Eds.), Ethics of data and analytics (pp. 254-264). Auerbach Publications. https://doi.org/10.1201/9781003278290
  • Araujo, T., Helberger, N., Kruikemeier, S., & De Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & society, 35(3), 611-623. https://doi.org/10.1007/s00146-019-00931-w
  • Asula, M., Makke, J., Freienthal, L., Kuulmets, H. A., & Sirel, R. (2021). Kratt: developing an automatic subject indexing tool for the National Library of Estonia. Cataloging & Classification Quarterly, 59(8), 775-793. https://doi.org/10.1080/01639374.2021.1998283
  • Babšek, M., Ravšelj, D., Umek, L., & Aristovnik, A. (2025). Artificial intelligence adoption in public administration: An overview of top-cited articles and practical applications. AI, 6(3), 44. https://doi.org/10.3390/ai6030044
  • Bayrakcı, E., & Koçman, M. A. (2023). Bilgi Güvenliği ve Elektronik Harp. Necmettin Erbakan Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 5(Özel Sayı), 184-206. https://doi.org/10.51124/jneusbf.2023.56
  • Bekker, S. (2020). Fundamental rights in digital welfare states: The case of SyRI in the Netherlands. In Netherlands yearbook of international law 2019: Yearbooks in international law: History, function and future (pp. 289-307). The Hague: TMC Asser Press.
  • Birleşik Krallık Ulusal Denetim Ofisi (2022). Managing tax compliance following the pandemic. https://www.nao.org.uk/wp-content/uploads/2022/12/managing-tax-compliance-following-the-pandemic-report.pdf
  • Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at Work, National Bureau of Economic Research working paper 31161.
  • Busch, P. A. (2017, January). The role of contextual factors in the influence of ICT on street-level discretion. Proceedings of the 50th Hawaii International Conference on System Sciences, HICSS, Hawaii, January 4-7, Proceedings (pp. 2963-2972).
  • Bygstad, B. (2017). Generative innovation: a comparison of lightweight and heavyweight IT. Journal of information technology, 32(2), 180-193. https://doi.org/10.1057/jit.2016.15
  • Carter, S., & Nielsen, M. (2017). Using artificial intelligence to augment human intelligence. Distill, 2(12). https://doi.org/10.23915/distill.00009
  • Closs-Davies, S., Burkinshaw, L., & Frecknall-Hughes, J. (2024). Is the HMRC charter fit for purpose? Experiences of tax practitioners and vulnerable citizens. British Tax Review, 2024(2), 304-326.
  • Cumhurbaşkanlığı Dijital Dönüşüm Ofisi (CBDDO) (2021). Ulusal Yapay Zekâ Stratejisi (UYZS) 2021-2025. https://cbddo.gov.tr/SharedFolderServer/Genel/File/TR-UlusalYZStratejisi2021-2025.pdf
  • Cumhurbaşkanlığı Dijital Dönüşüm Ofisi (CBDDO) (2024). Hakkımızda. T.C. Dijital Dönüşüm Ofisi. https://cbddo.gov.tr/hakkimizda/
  • Cumhurbaşkanlığı Dijital Dönüşüm Ofisi (CBDDO) (2025). Kamuda Yapay Zekâ Dönüşümü Projesi, T.C. Dijital Dönüşüm Ofisi https://cbddo.gov.tr/projeler/kayzed/
  • Çekici, O., & Bayrakcı, E. (2024). Yoksullukla Baş Etmede Sürdürülebilir Tarım Politikaları. Necmettin Erbakan Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 6(1), 87-100. https://doi.org/10.51124/jneusbf.2024.76
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (ÇSB) (2019). 2020-2023 Ulusal Akıllı Şehirler Stratejisi Eylem Planı. https://akillisehirler.gov.tr/wp-content/uploads/EylemPlani.pdf
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (ÇSB) (2024). 2024-2030 Ulusal Akıllı Şehirler Stratejisi Eylem Planı Taslağı. https://www.akillisehirler.gov.tr/wp-content/uploads/2023/12/Taslak-Eylem_Plani.pdf
  • Devlet Hava Meydanları İşletmesi (DHMİ) (2024). Devlet Hava Meydanları İşletmesi 2024 Yılı Faaliyet Raporu. https://www.dhmi.gov.tr/Lists/FaaliyetRaporlari/Attachments/25/54974_ faaliyetraporu2024.pdf
  • Dışişleri Bakanlığı (2025). Hızır yapay zekâ uygulaması. Hızır yapay zekâ uygulaması. http://www.konsolosluk.gov.tr/UseFulLinks/Index
  • Durmuş, N. K., & Erdem, İ. A. (2023). Vergi İdaresi 3.0: Yapay Zekâ Perspektifinden Bir İnceleme. Maliye Dergisi, 184, 225-253.
  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International journal of information management, 71, 102642.
  • E-Estonia (2020). New e-Estonia factsheet: National AI “Kratt” Strategy. https://e-estonia.com/new-e-estonia-factsheet-national-ai-kratt-strategy/
  • Engel, C., Linhardt, L. & Schubert, M. (2024). Code is law: how COMPAS affects the way the judiciary handles the risk of recidivism. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-024-09389-8 Ertel, W. (2024). Introduction to artificial intelligence. Springer Nature.
  • Etscheid, J. (2018). Automatisierungspotenziale in der Verwaltung. In R. Mohabbat Kar, B. Thapa, & P. Parycek (Eds.), (Un)berechenbar? Algorithmen und Automatisierung in Staat und Gesellschaft. Berlin.
  • Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin's Press.
  • European Union (EU) (2024). The EU Artificial Intelligence Act: The AI Act Explorer. https://artificialintelligenceact.eu/ai-act-explorer/
  • Gelir İdaresi Başkanlığı (GİB) (2025). Dijital Vergi Asistanı GİBİ. https://www.gib.gov.tr/node/170911
  • Gömleksiz, M. (2024). Kamu ve Yükseköğretim Ar-Ge Performansının Özel Sektör Ar-Ge Harcamalarına Etkisi: Seçilmiş OECD Ülkeleri Örneği, Necmettin Erbakan Üniversitesi Sustainable Welfare, 2(2), 96-113.
  • Grimmelikhuijsen, S. (2023). Explaining why the computer says no: Algorithmic transparency affects the perceived trustworthiness of automated decision‐making. Public Administration Review, 83(2), 241-262. https://doi.org/10.1111/puar.13483
  • Hazine ve Maliye Bakanlığı (2025). GİBİ uygulaması. T.C. Hazine ve Maliye Bakanlığı. https://www.gib.gov.tr/mobil-uygulamalar-0
  • HMRC (2019). Tackling tax avoidance, evasion and other forms of non-compliance, HM Report, ISBN 978-1-912809-45-5, PU2245. https://www.gov.uk/government/publications/tackling-tax-avoidance-evasion-and-other-forms-of-non-compliance
  • Houy, C., Hamberg, M., & Fettke, P. (2019, March). Robotic process automation in public administrations. In Digitalisierung von Staat und Verwaltung. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-685-5. Münster. 6.-7 March, 2019, (pp. 62-74). https://dl.gi.de/items/eaf373e1-36c9-4be1-ad8f-59de99deb30a
  • IRRC (2024). Uses of technology accross the Department. https://www.canada.ca/en/immigration-refugees-citizenship/corporate/transparency/digital-transparency-advanced-data-analytics/uses-technology.html ITU (2024). Forest Fires Support Decision System, Projects, https://www.itu.int/net4/wsis/stocktaking/Project/Projects/Details/17055725608247369
  • Juell-Skielse, G., Güner, E. O., & Han, S. (2022, September). Adoption of robotic process automation in the public sector: a survey study in Sweden. In Electronic Government: 21st IFIP WG 8.5 International Conference, EGOV 2022, Linköping, Sweden, September 6–8, 2022, (pp. , 336–352). Proceedings. Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-031-15086-9_22
  • Kişisel Verileri Koruma Kurumu (KVKK). (2016). 6698 Sayılı Kişisel Verilerin Korunması Kanunu. T.C. Resmî Gazete, 7 Nisan 2016. https://www.mevzuat.gov.tr/mevzuatmetin/1.5.6698.pdf
  • Kratt AI (2025). AI Use Cases, Kratt AI. https://www.kratid.ee/en/ai-use-cases
  • Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications policy, 44(6), 101976. https://doi.org/10.1016/j.telpol.2020.101976
  • Lahey Bölge Mahkemesi (2020). Case number: C-09-550982-HA ZA 18-388. [District Court of The Hague ruling invalidating SyRI].
  • Lindgren, I., Johansson, B., Söderström, F., & Toll, D. (2022, August). Why is it difficult to implement robotic process automation? Empirical cases from Swedish municipalities. In Electronic Government: 21st IFIP WG 8.5 International Conference, EGOV 2022, Linköping, Sweden, September 6–8, 2022, (pp. 353–368). Proceedings. Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-031-15086-9_23
  • Lindgren, I., Madsen, C. Ø., Hofmann, S., & Melin, U. (2019). Close encounters of the digital kind: A research agenda for the digitalization of public services. Government Information Quarterly, 36(3), 427–436. https://doi.org/10.1016/j.giq.2019.03.002
  • Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. Jossey-Bass.
  • Millî Eğitim Bakanlığı (MEB) (2025). Eba ve MEB asistan. T.C. Millî Eğitim Bakanlığı. https://www.meb.gov.tr/eba-asistan-uzaktan-egitimde-cevapsiz-soru-birakmayacak/haber/20829 /tr
  • Mökander, J., Morley, J., Taddeo, M., & Floridi, L. (2021). Ethics-based auditing of automated decision-making systems: Nature, scope, and limitations. Science and Engineering Ethics, 27(4), 44. https://doi.org/10.1007/s11948-021-00319-4
  • Orman Genel Müdürlüğü OGM (2025). Yangın Karar Destek Sistemi, Tanıtım Görseli https://yanginkarardestek.ogm.gov.tr/web/Images/ogm-ekran-en.jpg
  • Oxford Insights (2024). Government AI Readiness Index 2024. https://oxfordinsights.com/ai-readiness/ai-readiness-index/
  • Parycek, P., Schmid, V., & Novak, A. S. (2024). Artificial Intelligence (AI) and automation in administrative procedures: Potentials, limitations, and framework conditions. Journal of the Knowledge Economy, 15(2), 8390-8415. https://doi.org/10.1007/s13132-023-01433-3
  • Rachovitsa, A., & Johann, N. (2022). The human rights implications of the use of AI in the digital welfare state: Lessons learned from the Dutch SyRI case. Human Rights Law Review, 22(2), ngac010. https://doi.org/10.1093/hrlr/ngac010
  • Ramli, M. S. (2024). AI-Assisted Tax Authorities: Leveraging LLM, NLP, and ML for Efficient Tax Audit Reporting. Jurnal BPPK: Badan Pendidikan dan Pelatihan Keuangan, 17(3), 133-144.
  • Ranerup, A., & Henriksen, H. Z. (2019). Value positions viewed through the lens of automated decision-making: The case of social services. Government Information Quarterly, 36(4), 101377. https://doi.org/10.1016/j.giq.2019.05.004
  • Ranerup, A. & Henriksen, H.Z. (2020). Digital discretion: unpacking human and technological agency in automated decision making in Sweden’s social services. Social Science Computer Review, 40(2), 445–461. https://doi.org/10.1177/0894439320980434
  • Rehr, D., & Munteanu, D. (2021). The promise of robotic process automation for the public sector. Center for Business Civic Engagement, George Mason University. https://cbce.gmu.edu/wp-content/uploads/2021/06/The-Promise-of-RPA-For-The-Public-Sector.pdf
  • Reisman, D., Schultz, J., Crawford, K., & Whittaker, M. (2018). Algorithmic impact assessments: a practical Framework for Public Agency. AI Now.
  • Restrepo-Amariles, D. (2020). Algorithmic decision systems: automation and machine learning in the public administration. In W. Barfield (Ed.) The Cambridge Handbook of the Law of Algorithms. (pp. 273-300). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108680844.015
  • Roehl, U. B. (2022). Understanding automated decision-making in the public sector: a classification of automated, administrative decision-making. In G. Juell-Skielse, I. Lindgren, M. Åkesson (Eds.) Service Automation in the Public Sector: Concepts, Empirical Examples and Challenges (pp. 35-63). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-92644-1_3
  • Sağlık Bakanlığı (2025). NeyimVar? uygulaması, Sağlık Bakanlığı, https://neyimvar.gov.tr/giris
  • Salah, M., Abdelfattah, F., & Al Halbusi, H. (2023). Generative Artificial Intelligence (ChatGPT & Bard) in Public Administration Research: A Double-Edged Sword for Street-Level Bureaucracy Studies. International Journal of Public Administration, 1–7. https://doi.org/10.1080/01900692.2023.2274801
  • Snyder, H. (2019). Literature reviews as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339.
  • Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368–383. https://doi.org/10.1016/j.giq.2018.09.008
  • Suri, V. K., Elia, M., & van Hillegersberg, J. (2017, February). Software bots-the next frontier for shared services and functional excellence. Global Sourcing of Digital Services: Micro and Macro Perspectives. 11th Global Sourcing Workshop 2017, La Thuile, Italy, February 22-25, 2017, Revised Selected Papers 11 (pp. 81-94). Springer International Publishing
  • Tangi, L., Janssen, M., Benedetti, M., & Noci, G. (2021). Barriers and drivers of Artificial Intelligence adoption in public administrations: Evidence from a systematic literature review. Government Information Quarterly, 38(4), 101593. https://doi.org/10.1016/j.giq.2021.101593
  • Thomas, G. (2011). A Typology for the Case Study in Social Science Following a Review of Definition, Discourse, and Structure. Qualitative Inquiry, 17(6), 511–521. https://doi.org/10.1177/1077800411409884
  • Thomas, G. (2021). How to do your case study: A guide for students and researchers. 3rd ed., Sage.
  • Timmermann, D. (2020). Legal Tech-Anwendungen: Rechtswissenschaftliche Analyse und Entwicklung des Begriffs der algorithmischen Rechtsdienstleistung (3rd ed.). Nomos Verlag.
  • Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) (2023). KAMAG 1007 Kamu YZ Ekosistemi Proje Çağrısı. https://tubitak.gov.tr/sites/default/files/1776/1007-cbddo-2023-01_0.pdf
  • Türkiye Bilişim Derneği (TBD) (2024). Kamuda Yapay Zekâ Uygulamaları, Kamubib Çalışma Grubu Raporu, Kasım 2024, https://www.tbd.org.tr/pdf/kamubib-calisma-grubu/kamuda-yapay-zeka-uygulamalari-2024.pdf
  • Ulusal Siber Olaylara Müdahale Merkezi (USOM) (2025). USOM AR-GE Çalışmaları. https://www.usom.gov.tr/arge
  • Väisänen, M. (2022). Implementation of Robotic Process Automation, Case Study Palkeet.
  • Van Kimpren, F., de Bruijn, H., & Arnaboldi, M. (2023). Machine learning algorithms and public decision-making: A conceptual overview. In T. Rana & L. Parker (Eds.) The Routledge Handbook of Public Sector Accounting (pp. 124-138). Routledge.
  • Veale, M., & Brass, I. (2019). Administration by algorithm? Public management meets public sector machine learning. Public Money & Management, 39(5), 377–384. https://doi.org/10.1080/09540962.2019.1583101
  • Wihlborg, E., Larsson, H., & Hedström, K. (2016, January). “The Computer Says No!"--A Case Study on Automated Decision-Making in Public Authorities. 49th Hawaii international conference on system sciences (HICSS), Hawaai, January 5-8, 2016, (pp. 2903-2912). IEEE. https://www.computer.org/csdl/proceedings/hicss/2016/12OmNrMHOd6
  • Willcocks, L., Lacity, M., & Craig, A. (2017). Robotic process automation: strategic transformation lever for global business services? Journal of Information Technology Teaching Cases, 7(1), 17-28. https://doi.org/10.1057/s41266-016-0016-9
  • Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial Intelligence and the public sector—Applications and challenges. International Journal of Public Administration, 42(7), 596–615. https://doi.org/10.1080/01900692.2018.1498103
  • Yeung, K. (2018). Algorithmic regulation: A critical interrogation. Regulation & Governance, 12(4), 505–523. https://doi.org/10.1111/rego.12160
  • Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). Sage Publications. Zouridis, S., van Eck, M., & Bovens, M. (2020). Automated discretion. Information Polity, 25(4), 491–506. https://doi.org/10.3233/IP-190192
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Public Administration
Journal Section Research Articles
Authors

Niyazi Karabulut 0000-0002-6175-2025

Publication Date June 30, 2025
Submission Date May 5, 2025
Acceptance Date June 25, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Karabulut, N. (2025). Kamu Yönetiminde Yapay Zekâ Destekli Otomatik Karar Verme: Türkiye Bağlamında Bir Değerlendirme. Necmettin Erbakan Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 7(1), 151-183.

Journal of Necmettin Erbakan University Faculty of Political Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).