Optimization of ultrasound-assisted extraction of chickpea protein and techno-functional properties
Year 2023,
, 1296 - 1304, 15.10.2023
Merve Akalan
,
Mehmet Şükrü Karakuş
,
Bülent Başyiğit
,
Asliye Karaaslan
,
Mehmet Karaaslan
Abstract
In this study, the simultaneous systematic approach of pH and ultrasound for protein extraction from chickpea was optimized by response surface methodology (RSM). The effect of extraction time, ultrasonic device amplitude, and solvent pH on protein powder yield was evaluated in the protein extraction step. The optimum extraction conditions (protein powder yield: 9.55%) were determined as extraction time 42.41 min, amplitude 61.39% and pH: 8.38. The characteristic structure of chickpea protein powder was confirmed by Fourier transform infrared spectroscopy (FTIR). Techno-functional properties of the final powder were investigated. Water holding capacity (WHC) of protein was 240.24%, fat binding capacity (FBC) was 213.68%, foaming capacity was 37.50%, foam stability (10-30 min) was 73.33-60.00%. Emulsion properties including emulsion activity index (EAI) and emulsion stability index (ESI) (10-30 min), stability coefficient (R) and centrifugal precipitation rate (CPR) were 15.36 m2/g, 62.24-181.30, 0.68 and 14.60%, respectively. In conclusion, the simultaneous application of ultrasound and pH can be an innovative and promote method for the extraction of proteins from raw materials.
References
- R. Dias, C.B. Pereira, R. Pérez-Gregorio, N. Mateus, and V. Freitas, Recent advances on dietary polyphenol’s potential roles in Celiac Disease, Trends in Food Science & Technology, 107, 213–225, 2021. https://doi.org/10.1016/j.tifs.2020.10.033.
- S. Redecillas-Ferreiro, A. Moráis-López, and J. Manuel Moreno-Villares, Position paper on vegetarian diets in infants and children. Committee on Nutrition and Breastfeeding of the Spanish Paediatric Association, Anales de Pediatría (English Edition). 92, 306.e1-306.e6, 2020. https://doi.org/10.1016/j.anpede.2019.10.004.
- M. Nikbakht Nasrabadi, A. Sedaghat Doost, and R. Mezzenga, Modification approaches of plant-based proteins to improve their techno-functionality and use in food products, Food Hydrocolloids, 118, 106789, 2021. https://doi.org/10.1016/j.foodhyd.2021.106789.
- X. Pi, Y. Sun, X. Deng, D. Xin, J. Cheng, and M. Guo, Investigation of differences in allergenicity of protein from different soybean cultivars through LC/MS-MS, International Journal of Biological Macromolecules, 220, 1221–1230, 2022. https://doi.org/10.1016/j.ijbiomac.2022.08.154.
- C. Bi, S. Chi, T. Zhou, J. Zhang, X. Wang, J. Li, W. Shi, B. Tian, Z. Huang, and Y. Liu, Effect of low-frequency high-intensity ultrasound (HIU) on the physicochemical properties of chickpea protein, Food Research International, 159, 111474, 2022. https://doi.org/10.1016/j.foodres.2022.111474.
- J. Glusac, S. Isaschar-Ovdat, and A. Fishman, Transglutaminase modifies the physical stability and digestibility of chickpea protein-stabilized oil-in-water emulsions, Food Chemistry, 315, 126301, 2020. https://doi.org/10.1016/j.foodchem.2020.126301.
- E.M. Papalamprou, G.I. Doxastakis, C.G. Biliaderis, and V. Kiosseoglou, Influence of preparation methods on physicochemical and gelation properties of chickpea protein isolates, Food Hydrocolloids, 23, 337–343, 2009. https://doi.org/10.1016/j.foodhyd.2008.03.006.
- F. Potin, E. Goure, S. Lubbers, F. Husson, and R. Saurel, Functional properties of hemp protein concentrate obtained by alkaline extraction and successive ultrafiltration and spray‐drying, International Journal of Food Science & Technology, 57, 436–446, 2022. https://doi.org/10.1111/ijfs.15425.
- M. Mutlu, and A.A. Hayaloglu, Determination of bioactivity of seed protein hydrolysates and amygdalin content for some apricot (Prunus armeniaca L.) varieties grown in Malatya, Turkey, Food Analytıca Group, 2022. https://doi.org/10.57252/10.57252.2022.2.
- Z. Gao, P. Shen, Y. Lan, L. Cui, J.-B. Ohm, B. Chen, and J. Rao, Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate, Food Research International, 131, 109045, 2020. https://doi.org/10.1016/j.foodres.2020.109045.
- M. Çelik, M. Güzel, and M. Yildirim, Effect of pH on protein extraction from sour cherry kernels and functional properties of resulting protein concentrate, Journal of Food Science & Technology. 56, 3023–3032, 2019. https://doi.org/10.1007/s13197-019-03785-8.
- L.M. Devi, and L.S. Badwaik, Influence of temperature, time and alkali concentration on protein extraction from muskmelon seed meal, Indian Chemical Engineer, 64, 219–226, 2022. https://doi.org/10.1080/00194506.2021.1915887.
- A. Ochoa-Rivas, Y. Nava-Valdez, S.O. Serna-Saldívar, and C. Chuck-Hernández, Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates, Food and Bioprocess Technology, 10, 543–555, 2017. https://doi.org/10.1007/s11947-016-1838-3.
- M. Tirgar, P. Silcock, A. Carne, and E.J. Birch, Effect of extraction method on functional properties of flaxseed protein concentrates, Food Chemistry, 215, 417–424, 2017. https://doi.org/10.1016/j.foodchem.2016.08.002.
- Hao Feng, Gustavo Barbosa-Canovas, and Jochen Weiss, Ultrasound Technologies for Food and Bioprocessing, Springer New York, New York, NY, 2011. https://doi.org/10.1007/978-1-4419-7472-3.
- B.K. Tiwari, Ultrasound: A clean, green extraction technology, TrAC Trends in Analytical Chemistry, 71, 100–109, 2015. https://doi.org/10.1016/j.trac.2015.04.013.
- K. Kumar, S. Srivastav, and V.S. Sharanagat, Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review, Ultrasonics Sonochemistry, 70, 105325, 2021. https://doi.org/10.1016/j.ultsonch.2020.105325.
- N. Teslić, N. Bojanić, D. Rakić, A. Takači, Z. Zeković, A. Fišteš, M. Bodroža-Solarov, and B. Pavlić, Defatted wheat germ as source of polyphenols—Optimization of microwave-assisted extraction by RSM and ANN approach, Chemical Engineering and Processing-Process Intensification, 143, 107634, 2019. https://doi.org/10.1016/j.cep.2019.107634.
- H. Alasalvar, and Z. Yildirim, Ultrasound-assisted extraction of antioxidant phenolic compounds from Lavandula angustifolia flowers using natural deep eutectic solvents: An experimental design approach, Sustainable Chemistry and Pharmacy, 22, 100492, 2021. https://doi.org/10.1016/j.scp.2021.100492.
- M. Lei, F.-C. Jiang, J. Cai, S. Hu, R. Zhou, G. Liu, Y.-H. Wang, H.-B. Wang, J.-R. He, and X.-G. Xiong, Facile microencapsulation of olive oil in porous starch granules: Fabrication, characterization, and oxidative stability, International Journal of Biological Macromolecules, 111, 755–761, 2018. https://doi.org/10.1016/j.ijbiomac.2018.01.051.
- S.M. Cho, K.S. Kwak, D.C. Park, Y.S. Gu, C.I. Ji, D.H. Jang, Y.B. Lee, and S.B. Kim, Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage, Food Hydrocolloids, 18, 573–579, 2004. https://doi.org/10.1016/j.foodhyd.2003.10.001.
- H.W. Lee, Y. Lu, Y. Zhang, C. Fu, and D. Huang, Physicochemical and functional properties of red lentil protein isolates from three origins at different pH, Food Chemistry, 358, 129749, 2021. https://doi.org/10.1016/j.foodchem.2021.129749.
- W. Wang, G. Du, C. Li, H. Zhang, Y. Long, and Y. Ni, Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion, Carbohydrate Polymers, 151, 1–8, 2016. https://doi.org/10.1016/j.carbpol.2016.05.052.
- B. Başyiğit, Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları, Journal of the Institute of Science and Technology, 341–351, 2023. https://doi.org/10.21597/jist.1201844.
- Q. Li, Z. Wang, C. Dai, Y. Wang, W. Chen, X. Ju, J. Yuan, and R. He, Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH, Food Hydrocolloids, 88, 50–57, 2019. https://doi.org/10.1016/j.foodhyd.2018.09.020.
- F. Chemat, Zill-e-Huma, and M.K. Khan, Applications of ultrasound in food technology: Processing, preservation and extraction, Ultrasonics Sonochemistry, 18, 813–835, 2011. https://doi.org/10.1016/j.ultsonch.2010.11.023.
- M.C. Herrera, and M.D. Luque de Castro, Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection, Journal of Chromatography A, 1100, 1–7, 2005. https://doi.org/10.1016/j.chroma.2005.09.021.
- I.Y. Mizubuti, O. Biondo Júnior, L.W. de Oliveira Souza, R.S. dos Santos Ferreira da Silva, and E.I. Ida, Response surface methodology for extraction optimization of pigeon pea protein, Food Chemistry, 70, 259–265, 2000. https://doi.org/10.1016/S0308-8146(00)00078-9.
- L. Quanhong, and F. Caılı, Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein, Food Chemistry, 92, 701–706, 2005. https://doi.org/10.1016/j.foodchem.2004.08.042.
- P.I. Haris, Probing protein–protein interaction in biomembranes using Fourier transform infrared spectroscopy, Biochimica et Biophysica Acta (BBA) -Biomembranes, 1828, 2265–2271, 2013. https://doi.org/10.1016/j.bbamem.2013.04.008.
- J. Kong, and S. Yu, Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures, Acta Biochimica et Biophysica Sinica, 39, 549–559, 2007. https://doi.org/10.1111/j.1745-7270.2007.00320.x.
- S.E. Ebrahimi, A. Koocheki, E. Milani, and M. Mohebbi, Interactions between Lepidium perfoliatum seed gum – Grass pea (Lathyrus sativus) protein isolate in composite biodegradable film, Food Hydrocolloids, 54, 302–314, 2016. https://doi.org/10.1016/j.foodhyd.2015.10.020.
- J. Liu, M. Wu, M. Wang, Y. Zou, Z. Tan, D. Wang, and X.S. Sun, Predicting the content of camelina protein using FT-IR spectroscopy coupled with SVM model, Cluster Computing, 22, 8401–8406, 2019. https://doi.org/10.1007/s10586-018-1838-3.
- M.C. Cortez-Trejo, M. Gaytán-Martínez, M.L. Reyes-Vega, and S. Mendoza, Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity, Trends in Food Science & Technology, 116, 303–317, 2021. https://doi.org/10.1016/j.tifs.2021.07.030.
- A.K. Jukanti, P.M. Gaur, C.L.L. Gowda, and R.N. Chibbar, Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review, British Journal of Nutrition, 108, S11–S26, 2012. https://doi.org/10.1017/S0007114512000797.
- A.M. Ghribi, I.M. Gafsi, C. Blecker, S. Danthine, H. Attia, and S. Besbes, Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates, Journal of Food Engineering, 165, 179–188, 2015, https://doi.org/10.1016/j.jfoodeng.2015.06.021.
- N. Mesfin, A. Belay, and E. Amare, Effect of germination, roasting, and variety on physicochemical, techno-functional, and antioxidant properties of chickpea (Cicer arietinum L.) protein isolate powder, Heliyon. 7, 2021.
- M.N. Perović, B.S. Pajin, and M.G. Antov, The effect of enzymatic pretreatment of chickpea on functional properties and antioxidant activity of alkaline protein isolate, Food Chemistry, 374, 131809, 2022. https://doi.org/10.1016/j.foodchem.2021.131809.
- B. Başyiğit, M. Yücetepe, A. Karaaslan, and M. Karaaslan, High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins, Materials Today Communications, 28, 102618, 2021. https://doi.org/10.1016/j.mtcomm.2021.102618.
- T.A. El-Adawy, Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate, Food Chemistry, 70, 83–91, 2000. https://doi.org/10.1016/S0308-8146(00)00079-0.
- J.F. Zayas, Oil and Fat Binding Properties of Proteins, in: Functionality of Proteins in Food, Springer Berlin Heidelberg, Berlin, Heidelberg, 228–259, 1997. https://doi.org/10.1007/978-3-642-59116-7_5.
- G. Zhu, Y. Li, L. Xie, H. Sun, Z. Zheng, and F. Liu, Effects of enzymatic cross-linking combined with ultrasound on the oil adsorption capacity of chickpea protein, Food Chemistry, 383, 132641, 2022. https://doi.org/10.1016/j.foodchem.2022.132641.
- B. Başyiğit, A. Görgüç, E. Gençdağ, Ü. Cansu, F.M. Yılmaz, and M. Karaaslan, Functional characterization of high-yield plant protein powder valorized from de-oiled sour cherry seed using microwave-assisted enzymatic extraction followed by spray- and freeze-drying, Biomass Conversion and Biorefinery, 2022. https://doi.org/10.1007/s13399-022-03225-2.
- J.E. Kinsella, and N. Melachouris, Functional properties of proteins in foods: A survey, C R C Critical Reviews in Food Science and Nutrition, 7, 219–280, 1976. https://doi.org/10.1080/10408397609527208.
- C.J. Zhao, A. Schieber, and M.G. Gänzle, Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – A review, Food Research International, 89, 39–47, 2016. https://doi.org/10.1016/j.foodres.2016.08.042.
- I.A. Wani, D.S. Sogi, U.S. Shivhare, and B.S. Gill, Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates, Food Research International, 76, 11–18, 2015. https://doi.org/10.1016/j.foodres.2014.08.027.
- S.E. Molina Ortiz, and J.R. Wagner, Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties, Food Research International, 35, 511–518, 2002. https://doi.org/10.1016/S0963-9969(01)00149-1.
- I. Nır, Y. Feldman, A. Aserın, and N. Gartı, Surface Properties and Emulsification Behavior of Denatured Soy Proteins, Journal of Food Science, 59, 606–610, 1994. https://doi.org/10.1111/j.1365-2621.1994.tb05573.x.
- T. Zhang, B. Jiang, W. Mu, and Z. Wang, Emulsifying properties of chickpea protein isolates: Influence of pH and NaCl, Food Hydrocolloids, 23, 146–152, 2009. https://doi.org/10.1016/j.foodhyd.2007.12.005.
- J.I. Boye, S. Aksay, S. Roufik, S. Ribéreau, M. Mondor, E. Farnworth, and S.H. Rajamohamed, Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques, Food Research International, 43, 537–546, 2010. https://doi.org/10.1016/j.foodres.2009.07.021.
- A.C. Karaca, N. Low, and M. Nickerson, Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction, Food Research International, 44, 2742–2750, 2011. https://doi.org/10.1016/j.foodres.2011.06.012.
- D.J. Mcclements, Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability, Critical Reviews in Food Science and Nutrition, 47, 611–649, 2007. https://doi.org/10.1080/10408390701289292
Nohut proteininin ultrases destekli özütlenmesinin optimizasyonu ve tekno-fonksiyonel özellikleri
Year 2023,
, 1296 - 1304, 15.10.2023
Merve Akalan
,
Mehmet Şükrü Karakuş
,
Bülent Başyiğit
,
Asliye Karaaslan
,
Mehmet Karaaslan
Abstract
Bu çalışmada nohuttan protein eldesi için pH ve ultrasesin eş zamanlı sistematik yaklaşımı ve yanıt yüzey metodolojisi (RSM) ile optimizasyon gerçekleştirilmiştir. Protein özütleme aşamasında özütleme süresi, ultrases cihaz genliği ve solvent pH’sının protein tozu verimine etkisi değerlendirilmiştir. Optimum özütleme koşulları (protein tozu verimi: %9.55) özütleme süresi 42.41 dk, genlik %61.39 ve pH:8.38 olarak belirlenmiştir. Nohut protein tozunun karakteristik yapısı Fourier dönüşümü kızılötesi spektroskopisi (FTIR) ile doğrulanmıştır. Nihai tozun tekno-fonksiyonel özellikleri detaylı araştırılmıştır. Proteinin su tutma kapasitesi (STK) %240.24, yağ bağlama kapasitesi (YBK) %213.68, köpürme kapasitesi %37.50, köpük stabilitesi (10-30. dk) %73.33-60.00 bulunmuştur. Emülsiyon özellikleri ise emülsiyon aktivite indeksi (EAI) ve emülsiyon stabilite indeksi (ESI) (10-30. dk), stabilite katsayısı (R) ve santrifüj çökme oranı (CPR) dahil olmak üzere sırasıyla 15.36 m2/g, 62.24-181.30, 0.68 ve %14.60 bulunmuştur. Sonuç olarak, proteinlerin hammaddelerden özütlenmesinde ultrases ve pH eş zamanlı uygulaması yenilikçi ve umut verici bir yöntem olabilir.
References
- R. Dias, C.B. Pereira, R. Pérez-Gregorio, N. Mateus, and V. Freitas, Recent advances on dietary polyphenol’s potential roles in Celiac Disease, Trends in Food Science & Technology, 107, 213–225, 2021. https://doi.org/10.1016/j.tifs.2020.10.033.
- S. Redecillas-Ferreiro, A. Moráis-López, and J. Manuel Moreno-Villares, Position paper on vegetarian diets in infants and children. Committee on Nutrition and Breastfeeding of the Spanish Paediatric Association, Anales de Pediatría (English Edition). 92, 306.e1-306.e6, 2020. https://doi.org/10.1016/j.anpede.2019.10.004.
- M. Nikbakht Nasrabadi, A. Sedaghat Doost, and R. Mezzenga, Modification approaches of plant-based proteins to improve their techno-functionality and use in food products, Food Hydrocolloids, 118, 106789, 2021. https://doi.org/10.1016/j.foodhyd.2021.106789.
- X. Pi, Y. Sun, X. Deng, D. Xin, J. Cheng, and M. Guo, Investigation of differences in allergenicity of protein from different soybean cultivars through LC/MS-MS, International Journal of Biological Macromolecules, 220, 1221–1230, 2022. https://doi.org/10.1016/j.ijbiomac.2022.08.154.
- C. Bi, S. Chi, T. Zhou, J. Zhang, X. Wang, J. Li, W. Shi, B. Tian, Z. Huang, and Y. Liu, Effect of low-frequency high-intensity ultrasound (HIU) on the physicochemical properties of chickpea protein, Food Research International, 159, 111474, 2022. https://doi.org/10.1016/j.foodres.2022.111474.
- J. Glusac, S. Isaschar-Ovdat, and A. Fishman, Transglutaminase modifies the physical stability and digestibility of chickpea protein-stabilized oil-in-water emulsions, Food Chemistry, 315, 126301, 2020. https://doi.org/10.1016/j.foodchem.2020.126301.
- E.M. Papalamprou, G.I. Doxastakis, C.G. Biliaderis, and V. Kiosseoglou, Influence of preparation methods on physicochemical and gelation properties of chickpea protein isolates, Food Hydrocolloids, 23, 337–343, 2009. https://doi.org/10.1016/j.foodhyd.2008.03.006.
- F. Potin, E. Goure, S. Lubbers, F. Husson, and R. Saurel, Functional properties of hemp protein concentrate obtained by alkaline extraction and successive ultrafiltration and spray‐drying, International Journal of Food Science & Technology, 57, 436–446, 2022. https://doi.org/10.1111/ijfs.15425.
- M. Mutlu, and A.A. Hayaloglu, Determination of bioactivity of seed protein hydrolysates and amygdalin content for some apricot (Prunus armeniaca L.) varieties grown in Malatya, Turkey, Food Analytıca Group, 2022. https://doi.org/10.57252/10.57252.2022.2.
- Z. Gao, P. Shen, Y. Lan, L. Cui, J.-B. Ohm, B. Chen, and J. Rao, Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate, Food Research International, 131, 109045, 2020. https://doi.org/10.1016/j.foodres.2020.109045.
- M. Çelik, M. Güzel, and M. Yildirim, Effect of pH on protein extraction from sour cherry kernels and functional properties of resulting protein concentrate, Journal of Food Science & Technology. 56, 3023–3032, 2019. https://doi.org/10.1007/s13197-019-03785-8.
- L.M. Devi, and L.S. Badwaik, Influence of temperature, time and alkali concentration on protein extraction from muskmelon seed meal, Indian Chemical Engineer, 64, 219–226, 2022. https://doi.org/10.1080/00194506.2021.1915887.
- A. Ochoa-Rivas, Y. Nava-Valdez, S.O. Serna-Saldívar, and C. Chuck-Hernández, Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates, Food and Bioprocess Technology, 10, 543–555, 2017. https://doi.org/10.1007/s11947-016-1838-3.
- M. Tirgar, P. Silcock, A. Carne, and E.J. Birch, Effect of extraction method on functional properties of flaxseed protein concentrates, Food Chemistry, 215, 417–424, 2017. https://doi.org/10.1016/j.foodchem.2016.08.002.
- Hao Feng, Gustavo Barbosa-Canovas, and Jochen Weiss, Ultrasound Technologies for Food and Bioprocessing, Springer New York, New York, NY, 2011. https://doi.org/10.1007/978-1-4419-7472-3.
- B.K. Tiwari, Ultrasound: A clean, green extraction technology, TrAC Trends in Analytical Chemistry, 71, 100–109, 2015. https://doi.org/10.1016/j.trac.2015.04.013.
- K. Kumar, S. Srivastav, and V.S. Sharanagat, Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review, Ultrasonics Sonochemistry, 70, 105325, 2021. https://doi.org/10.1016/j.ultsonch.2020.105325.
- N. Teslić, N. Bojanić, D. Rakić, A. Takači, Z. Zeković, A. Fišteš, M. Bodroža-Solarov, and B. Pavlić, Defatted wheat germ as source of polyphenols—Optimization of microwave-assisted extraction by RSM and ANN approach, Chemical Engineering and Processing-Process Intensification, 143, 107634, 2019. https://doi.org/10.1016/j.cep.2019.107634.
- H. Alasalvar, and Z. Yildirim, Ultrasound-assisted extraction of antioxidant phenolic compounds from Lavandula angustifolia flowers using natural deep eutectic solvents: An experimental design approach, Sustainable Chemistry and Pharmacy, 22, 100492, 2021. https://doi.org/10.1016/j.scp.2021.100492.
- M. Lei, F.-C. Jiang, J. Cai, S. Hu, R. Zhou, G. Liu, Y.-H. Wang, H.-B. Wang, J.-R. He, and X.-G. Xiong, Facile microencapsulation of olive oil in porous starch granules: Fabrication, characterization, and oxidative stability, International Journal of Biological Macromolecules, 111, 755–761, 2018. https://doi.org/10.1016/j.ijbiomac.2018.01.051.
- S.M. Cho, K.S. Kwak, D.C. Park, Y.S. Gu, C.I. Ji, D.H. Jang, Y.B. Lee, and S.B. Kim, Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage, Food Hydrocolloids, 18, 573–579, 2004. https://doi.org/10.1016/j.foodhyd.2003.10.001.
- H.W. Lee, Y. Lu, Y. Zhang, C. Fu, and D. Huang, Physicochemical and functional properties of red lentil protein isolates from three origins at different pH, Food Chemistry, 358, 129749, 2021. https://doi.org/10.1016/j.foodchem.2021.129749.
- W. Wang, G. Du, C. Li, H. Zhang, Y. Long, and Y. Ni, Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion, Carbohydrate Polymers, 151, 1–8, 2016. https://doi.org/10.1016/j.carbpol.2016.05.052.
- B. Başyiğit, Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiyon Sistemlerinin Stabilite Davranışları, Journal of the Institute of Science and Technology, 341–351, 2023. https://doi.org/10.21597/jist.1201844.
- Q. Li, Z. Wang, C. Dai, Y. Wang, W. Chen, X. Ju, J. Yuan, and R. He, Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH, Food Hydrocolloids, 88, 50–57, 2019. https://doi.org/10.1016/j.foodhyd.2018.09.020.
- F. Chemat, Zill-e-Huma, and M.K. Khan, Applications of ultrasound in food technology: Processing, preservation and extraction, Ultrasonics Sonochemistry, 18, 813–835, 2011. https://doi.org/10.1016/j.ultsonch.2010.11.023.
- M.C. Herrera, and M.D. Luque de Castro, Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection, Journal of Chromatography A, 1100, 1–7, 2005. https://doi.org/10.1016/j.chroma.2005.09.021.
- I.Y. Mizubuti, O. Biondo Júnior, L.W. de Oliveira Souza, R.S. dos Santos Ferreira da Silva, and E.I. Ida, Response surface methodology for extraction optimization of pigeon pea protein, Food Chemistry, 70, 259–265, 2000. https://doi.org/10.1016/S0308-8146(00)00078-9.
- L. Quanhong, and F. Caılı, Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein, Food Chemistry, 92, 701–706, 2005. https://doi.org/10.1016/j.foodchem.2004.08.042.
- P.I. Haris, Probing protein–protein interaction in biomembranes using Fourier transform infrared spectroscopy, Biochimica et Biophysica Acta (BBA) -Biomembranes, 1828, 2265–2271, 2013. https://doi.org/10.1016/j.bbamem.2013.04.008.
- J. Kong, and S. Yu, Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures, Acta Biochimica et Biophysica Sinica, 39, 549–559, 2007. https://doi.org/10.1111/j.1745-7270.2007.00320.x.
- S.E. Ebrahimi, A. Koocheki, E. Milani, and M. Mohebbi, Interactions between Lepidium perfoliatum seed gum – Grass pea (Lathyrus sativus) protein isolate in composite biodegradable film, Food Hydrocolloids, 54, 302–314, 2016. https://doi.org/10.1016/j.foodhyd.2015.10.020.
- J. Liu, M. Wu, M. Wang, Y. Zou, Z. Tan, D. Wang, and X.S. Sun, Predicting the content of camelina protein using FT-IR spectroscopy coupled with SVM model, Cluster Computing, 22, 8401–8406, 2019. https://doi.org/10.1007/s10586-018-1838-3.
- M.C. Cortez-Trejo, M. Gaytán-Martínez, M.L. Reyes-Vega, and S. Mendoza, Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity, Trends in Food Science & Technology, 116, 303–317, 2021. https://doi.org/10.1016/j.tifs.2021.07.030.
- A.K. Jukanti, P.M. Gaur, C.L.L. Gowda, and R.N. Chibbar, Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review, British Journal of Nutrition, 108, S11–S26, 2012. https://doi.org/10.1017/S0007114512000797.
- A.M. Ghribi, I.M. Gafsi, C. Blecker, S. Danthine, H. Attia, and S. Besbes, Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates, Journal of Food Engineering, 165, 179–188, 2015, https://doi.org/10.1016/j.jfoodeng.2015.06.021.
- N. Mesfin, A. Belay, and E. Amare, Effect of germination, roasting, and variety on physicochemical, techno-functional, and antioxidant properties of chickpea (Cicer arietinum L.) protein isolate powder, Heliyon. 7, 2021.
- M.N. Perović, B.S. Pajin, and M.G. Antov, The effect of enzymatic pretreatment of chickpea on functional properties and antioxidant activity of alkaline protein isolate, Food Chemistry, 374, 131809, 2022. https://doi.org/10.1016/j.foodchem.2021.131809.
- B. Başyiğit, M. Yücetepe, A. Karaaslan, and M. Karaaslan, High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins, Materials Today Communications, 28, 102618, 2021. https://doi.org/10.1016/j.mtcomm.2021.102618.
- T.A. El-Adawy, Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate, Food Chemistry, 70, 83–91, 2000. https://doi.org/10.1016/S0308-8146(00)00079-0.
- J.F. Zayas, Oil and Fat Binding Properties of Proteins, in: Functionality of Proteins in Food, Springer Berlin Heidelberg, Berlin, Heidelberg, 228–259, 1997. https://doi.org/10.1007/978-3-642-59116-7_5.
- G. Zhu, Y. Li, L. Xie, H. Sun, Z. Zheng, and F. Liu, Effects of enzymatic cross-linking combined with ultrasound on the oil adsorption capacity of chickpea protein, Food Chemistry, 383, 132641, 2022. https://doi.org/10.1016/j.foodchem.2022.132641.
- B. Başyiğit, A. Görgüç, E. Gençdağ, Ü. Cansu, F.M. Yılmaz, and M. Karaaslan, Functional characterization of high-yield plant protein powder valorized from de-oiled sour cherry seed using microwave-assisted enzymatic extraction followed by spray- and freeze-drying, Biomass Conversion and Biorefinery, 2022. https://doi.org/10.1007/s13399-022-03225-2.
- J.E. Kinsella, and N. Melachouris, Functional properties of proteins in foods: A survey, C R C Critical Reviews in Food Science and Nutrition, 7, 219–280, 1976. https://doi.org/10.1080/10408397609527208.
- C.J. Zhao, A. Schieber, and M.G. Gänzle, Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – A review, Food Research International, 89, 39–47, 2016. https://doi.org/10.1016/j.foodres.2016.08.042.
- I.A. Wani, D.S. Sogi, U.S. Shivhare, and B.S. Gill, Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates, Food Research International, 76, 11–18, 2015. https://doi.org/10.1016/j.foodres.2014.08.027.
- S.E. Molina Ortiz, and J.R. Wagner, Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties, Food Research International, 35, 511–518, 2002. https://doi.org/10.1016/S0963-9969(01)00149-1.
- I. Nır, Y. Feldman, A. Aserın, and N. Gartı, Surface Properties and Emulsification Behavior of Denatured Soy Proteins, Journal of Food Science, 59, 606–610, 1994. https://doi.org/10.1111/j.1365-2621.1994.tb05573.x.
- T. Zhang, B. Jiang, W. Mu, and Z. Wang, Emulsifying properties of chickpea protein isolates: Influence of pH and NaCl, Food Hydrocolloids, 23, 146–152, 2009. https://doi.org/10.1016/j.foodhyd.2007.12.005.
- J.I. Boye, S. Aksay, S. Roufik, S. Ribéreau, M. Mondor, E. Farnworth, and S.H. Rajamohamed, Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques, Food Research International, 43, 537–546, 2010. https://doi.org/10.1016/j.foodres.2009.07.021.
- A.C. Karaca, N. Low, and M. Nickerson, Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction, Food Research International, 44, 2742–2750, 2011. https://doi.org/10.1016/j.foodres.2011.06.012.
- D.J. Mcclements, Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability, Critical Reviews in Food Science and Nutrition, 47, 611–649, 2007. https://doi.org/10.1080/10408390701289292