BibTex RIS Cite

STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ

Year 2013, , 43 - 49, 11.07.2016
https://doi.org/10.28948/ngumuh.239376

Abstract

Bu makale, Dirichlet sınır şartlarıyla ve -y''(x)+q(x)y(x) diferansiyel ifadeyle üretilen Sturm Liouville diferansiyel operatörleriyle ilgilidir. Burada q(x) sonlu sayıda tekil noktaları olan Lebesque integrallenebilir potansiyel fonksiyondur. Nümerik yöntemlerden sonlu farklar yöntemi kullanılarak, Sturm Liouville diferansiyel operatörün özdeğerleri elde edilmiştir. Bu özdeğerlerin perturbasyonları hesaplanmıştır.

References

  • BIRKHOFF, G.D., "Boundary Value and Expansion Problems of Ordinary Linear Differantial Equations", Trans. Amer. Math. Soc., 9, 373-395, 1908.
  • TAMARKIN, J. D., "Some General Problems of the Theory of Ordinary Linear Differential Equations and Expansion of an Arbitrary Function in Series of Fundamental Functions", Math. Zeit., 27, 1-54, 1927.
  • TITCHMARSH, E.C., "Eigenfunction Expansions", Oxford University Press, Vol I., 1962.
  • NAIMARK, M. A., "Linear Differential Operators", 4th Edition, George G. Harrap and Company,1967.
  • MARCHENKO, V. A., "Sturm-Liouville Operators and Applications", Basel, Birkhauser Verlag, 1986.
  • EVERITT, W.N., Gunson, J., "Some Comments on Sturm-Liouville Eigenvalue Problems with Interior Singularities", Journal of Applied Mathematics and Physics., 38, 813-838, 1987.
  • PARLETT, B. N., "The Symmetric Eigenvalue Problem", Englewood Cliffs, Prentice-Hall, N. J., 1980.
  • DUNFORD, N., SCHWARTZ, J. T., "Linear Operators", Part 3, Spectral Operators, Wiley-Interscience, MR g:47001c, New York, 1988.
  • PAINE, J. W., HOOG, F. R., ANDERSSEN R.S., "On the Correction of Finite Difference Eigenvalue Approximations For Sturm-Liouville Problems", Computing, 26, 123-139, 1981.
  • ANDREW, A., PAINE J., "Correction of Finite Element Estimates For Sturm-Liouville Eigenvalues", Numer. Math.,50, 205-215, 1986.

NUMERICAL EIGENVALUES OF STURM-LIOUVILLE OPERATORS

Year 2013, , 43 - 49, 11.07.2016
https://doi.org/10.28948/ngumuh.239376

Abstract

This paper relates to Sturm Liouville differential operators generated by the differential expression -y''(x)+q(x)y(x) and by Dirichlet boundary conditions. Here q(x) is a Lebesque integrable potential function having finite number of singular points. Using the finite difference method from numerical methods, eigenvalues of the Sturm Liouville differential operator are obtained. Perturbations of these eigenvalues are calculated.

References

  • BIRKHOFF, G.D., "Boundary Value and Expansion Problems of Ordinary Linear Differantial Equations", Trans. Amer. Math. Soc., 9, 373-395, 1908.
  • TAMARKIN, J. D., "Some General Problems of the Theory of Ordinary Linear Differential Equations and Expansion of an Arbitrary Function in Series of Fundamental Functions", Math. Zeit., 27, 1-54, 1927.
  • TITCHMARSH, E.C., "Eigenfunction Expansions", Oxford University Press, Vol I., 1962.
  • NAIMARK, M. A., "Linear Differential Operators", 4th Edition, George G. Harrap and Company,1967.
  • MARCHENKO, V. A., "Sturm-Liouville Operators and Applications", Basel, Birkhauser Verlag, 1986.
  • EVERITT, W.N., Gunson, J., "Some Comments on Sturm-Liouville Eigenvalue Problems with Interior Singularities", Journal of Applied Mathematics and Physics., 38, 813-838, 1987.
  • PARLETT, B. N., "The Symmetric Eigenvalue Problem", Englewood Cliffs, Prentice-Hall, N. J., 1980.
  • DUNFORD, N., SCHWARTZ, J. T., "Linear Operators", Part 3, Spectral Operators, Wiley-Interscience, MR g:47001c, New York, 1988.
  • PAINE, J. W., HOOG, F. R., ANDERSSEN R.S., "On the Correction of Finite Difference Eigenvalue Approximations For Sturm-Liouville Problems", Computing, 26, 123-139, 1981.
  • ANDREW, A., PAINE J., "Correction of Finite Element Estimates For Sturm-Liouville Eigenvalues", Numer. Math.,50, 205-215, 1986.
There are 10 citations in total.

Details

Other ID JA44HG98KV
Journal Section Articles
Authors

Güldem Yıldız This is me

Publication Date July 11, 2016
Submission Date July 11, 2016
Published in Issue Year 2013

Cite

APA Yıldız, G. (2016). STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2(2), 43-49. https://doi.org/10.28948/ngumuh.239376
AMA Yıldız G. STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ. NÖHÜ Müh. Bilim. Derg. July 2016;2(2):43-49. doi:10.28948/ngumuh.239376
Chicago Yıldız, Güldem. “STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2, no. 2 (July 2016): 43-49. https://doi.org/10.28948/ngumuh.239376.
EndNote Yıldız G (July 1, 2016) STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2 2 43–49.
IEEE G. Yıldız, “STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ”, NÖHÜ Müh. Bilim. Derg., vol. 2, no. 2, pp. 43–49, 2016, doi: 10.28948/ngumuh.239376.
ISNAD Yıldız, Güldem. “STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2/2 (July 2016), 43-49. https://doi.org/10.28948/ngumuh.239376.
JAMA Yıldız G. STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ. NÖHÜ Müh. Bilim. Derg. 2016;2:43–49.
MLA Yıldız, Güldem. “STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 2, no. 2, 2016, pp. 43-49, doi:10.28948/ngumuh.239376.
Vancouver Yıldız G. STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ. NÖHÜ Müh. Bilim. Derg. 2016;2(2):43-9.

download