Research Article
BibTex RIS Cite

On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences

Year 2017, Volume: 5 Issue: 4, 80 - 88, 01.10.2017

Abstract


References

  • Apostol T., M., Mathematical Analysis, Pearson Education Asia Limited and Chine Machine Press, 1974.
  • Başar F., Sever Y., The Space of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
  • Başar F., Summability Theory and Its Applications, Bentham Science Publisher, e-books, Monographs, İstanbul (2002)
  • Chew T. S., Lee P., Y., Orthoganally Additive Functionals on Sequence Spaces, SEA Bull. Math., 9 (1985), 81-85.
  • Dedagich F., Zabreiko P. P., Operator Superpositions in the Space l_p, Sibirskii Matematicheskii Zhurnal, 28 (1987), 86-98.
  • Herawaty E., The Locally Boundedness Criteria for Superposition Operators on l_Φ (L), Applied Mathematical Science, 7 (2013), 727-733.
  • Moricz, F., Extension Of The Spaces c and c_0 From Single To Double Sequences, Acta Math. Hung., 57 (1–2) (1991), 129–136.
  • Kolk,E., Raidjoe, A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czechoslovak Mathematical Journal, 57 (2007), 777-792.
  • Limaye B.V., Zelstser M., On The Pringsheim Convergence Of Double Series, Proc. Eston. Aca. Sci., 58,2 (2009), 108-121.
  • Petranuarat S., Kemprasit Y., Superposition Operators On l_p And c_0 Into l_q (1≤p,q<∞), Southeast Asian Bulletion of Mathematics, 21 (1997), 139-147.
  • Pluciennik, R. ,Continuity Of Superposition Operators On w_0 And W_0, Comment. Math. Univ. Carolinae 31(1990), 529-542.
  • Pringsheim A., Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence SpacesnL_p, Filomat, 29:9 (2015), 2107-2118.
  • Sağır B., Güngör N., Locally Boundedness And Continuity Of Superposition Operators On The Double Sequence Spaces C_r0, J. Computational Analysis And Applications, Vol 19, 2 (2015), 365-377.
  • Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence Spaces Of Maddox C_r0 (p), Romanian Journal of Mathematics and Computer Science, Vol 5, 1 (2015), 35-45.
  • Sama-ae, A., Boundedness Of Superposition Operators On The Sequence Spaces Of Maddoxâ, Master Thesis, Chiang Mai University, 1997
  • Sama-ae, A., Boundedness And Continuity Of Superposition Operator On E_r (p) and F_r (p), Songklanakarin J. Sci. Technol., 24 (2002), 452-466.
  • Streit, R. F., The Summation Of Convergent Double Series, Texas Tech University (1972).
Year 2017, Volume: 5 Issue: 4, 80 - 88, 01.10.2017

Abstract

References

  • Apostol T., M., Mathematical Analysis, Pearson Education Asia Limited and Chine Machine Press, 1974.
  • Başar F., Sever Y., The Space of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
  • Başar F., Summability Theory and Its Applications, Bentham Science Publisher, e-books, Monographs, İstanbul (2002)
  • Chew T. S., Lee P., Y., Orthoganally Additive Functionals on Sequence Spaces, SEA Bull. Math., 9 (1985), 81-85.
  • Dedagich F., Zabreiko P. P., Operator Superpositions in the Space l_p, Sibirskii Matematicheskii Zhurnal, 28 (1987), 86-98.
  • Herawaty E., The Locally Boundedness Criteria for Superposition Operators on l_Φ (L), Applied Mathematical Science, 7 (2013), 727-733.
  • Moricz, F., Extension Of The Spaces c and c_0 From Single To Double Sequences, Acta Math. Hung., 57 (1–2) (1991), 129–136.
  • Kolk,E., Raidjoe, A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czechoslovak Mathematical Journal, 57 (2007), 777-792.
  • Limaye B.V., Zelstser M., On The Pringsheim Convergence Of Double Series, Proc. Eston. Aca. Sci., 58,2 (2009), 108-121.
  • Petranuarat S., Kemprasit Y., Superposition Operators On l_p And c_0 Into l_q (1≤p,q<∞), Southeast Asian Bulletion of Mathematics, 21 (1997), 139-147.
  • Pluciennik, R. ,Continuity Of Superposition Operators On w_0 And W_0, Comment. Math. Univ. Carolinae 31(1990), 529-542.
  • Pringsheim A., Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence SpacesnL_p, Filomat, 29:9 (2015), 2107-2118.
  • Sağır B., Güngör N., Locally Boundedness And Continuity Of Superposition Operators On The Double Sequence Spaces C_r0, J. Computational Analysis And Applications, Vol 19, 2 (2015), 365-377.
  • Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence Spaces Of Maddox C_r0 (p), Romanian Journal of Mathematics and Computer Science, Vol 5, 1 (2015), 35-45.
  • Sama-ae, A., Boundedness Of Superposition Operators On The Sequence Spaces Of Maddoxâ, Master Thesis, Chiang Mai University, 1997
  • Sama-ae, A., Boundedness And Continuity Of Superposition Operator On E_r (p) and F_r (p), Songklanakarin J. Sci. Technol., 24 (2002), 452-466.
  • Streit, R. F., The Summation Of Convergent Double Series, Texas Tech University (1972).
There are 18 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Oguz Ogur

Publication Date October 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 4

Cite

APA Ogur, O. (2017). On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences, 5(4), 80-88.
AMA Ogur O. On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences. October 2017;5(4):80-88.
Chicago Ogur, Oguz. “On Characterization of Boundedness of Superposition Operators on the Maddox Space C_r0 (p) of Double Sequences”. New Trends in Mathematical Sciences 5, no. 4 (October 2017): 80-88.
EndNote Ogur O (October 1, 2017) On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences 5 4 80–88.
IEEE O. Ogur, “On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences”, New Trends in Mathematical Sciences, vol. 5, no. 4, pp. 80–88, 2017.
ISNAD Ogur, Oguz. “On Characterization of Boundedness of Superposition Operators on the Maddox Space C_r0 (p) of Double Sequences”. New Trends in Mathematical Sciences 5/4 (October 2017), 80-88.
JAMA Ogur O. On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences. 2017;5:80–88.
MLA Ogur, Oguz. “On Characterization of Boundedness of Superposition Operators on the Maddox Space C_r0 (p) of Double Sequences”. New Trends in Mathematical Sciences, vol. 5, no. 4, 2017, pp. 80-88.
Vancouver Ogur O. On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences. 2017;5(4):80-8.