Review
BibTex RIS Cite

RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI

Year 2023, , 931 - 954, 22.12.2023
https://doi.org/10.31796/ogummf.1140488

Abstract

Elverişsiz mimari formlar ve gelişen teknoloji ile birlikte artan yapısal donanımlar yapıları rüzgâra karşı daha hassas hale getirmektedir. Bu durum önceleri diğer yüklerle birlikte değerlendirilen rüzgâr etkilerinin artık majör etki olarak kabul edildiği “Rüzgâra Dayanıklı Yapı Tasarımı” (RDYT) alanına olan ilgiyi günden güne arttırmaktadır. RDYT metodolojileri oldukça karmaşık optimizasyon problemlerini ortaya çıkarmaktadır. Bu çalışmada RDYT alanında yapılan optimizasyon çalışmalarının incelenmesi amaçlanmıştır. Literatür incelendiğinde konunun aerodinamik şekil optimizasyonu, rüzgâr etkisi altında yapısal optimizasyon ve sönümleyici sistemler ile rüzgâra dayanıklı optimum tasarım olmak üzere üç alt başlıkta incelenebileceği görülmüştür. Bu bağlamda algoritma tabanlı optimizasyon süreci içeren temel ve güncel çalışmalar tespit edilerek incelemeleri sunulmuştur.

References

  • Abdelaziz, K. M., Alipour, A., & Hobeck, J. D. (2021). A smart façade system controller for optimized wind-induced vibration mitigation in tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 212, 104601. doi: https://doi.org/10.1016/j.jweia.2021.104601
  • Academia. Erişim Adresi: www.academia.edu, ET: 10.12.2021
  • Alkmim, M. H., Fabro, A. T., & de Morais, M. V. (2018). Optimization of a tuned liquid column damper subject to an arbitrary stochastic wind. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 511. doi: https://doi.org/10.1007/s40430-018-1471-3
  • Athanasiou, A., Stathopoulos, T., & Tirca, L. (2020). Discussion of “Performance-Based Wind-Resistant Optimization Design for Tall Building Structures” by Ting Deng, Jiyang Fu, Qingxing Zheng, Jiurong Wu, and Yonglin Pi. Journal of Structural Engineering, 146(8), 07020009. doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002754
  • Bernardini, E., Spence, S. M., Wei, D., & Kareem, A. (2015). Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach. Journal of Wind Engineering and Industrial Aerodynamics, 144, 154-164. doi: https://doi.org/10.1016/j.jweia.2015.03.011
  • Chan, C. M., & Huang, M. F. (2010). Optimal wind resistant performance-based design of tall buildings. Paper presented at the Structures Congress 2010: 19th Analysis and Computation Specialty Conference, Orlando, Florida.
  • Chan, C. M., Huang, M. F., & Kwok, K. C. (2010). Integrated wind load analysis and stiffness optimization of tall buildings with 3D modes. Engineering Structures, 32(5), 1252-1261. doi: https://doi.org/10.1016/j.engstruct.2010.01.001
  • Deng, T., Fu, J., Zheng, Q., Wu, J., & Pi, Y. (2019). Performance-based wind-resistant optimization design for tall building structures. Journal of Structural Engineering, 145(10), 04019103. doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002383
  • Ding, F., & Kareem, A. (2018). A multi-fidelity shape optimization via surrogate modeling for civil structures. Journal of Wind Engineering and Industrial Aerodynamics, 178, 49-56. doi: https://doi.org/10.1016/j.jweia.2018.04.022
  • Elshaer, A., Bitsuamlak, G. T., & El Damatty, A. (2016). Aerodynamic shape optimization of tall buildings using twisting and corner modifications. Paper presented at the 8th International Colloquium on Bluff Body Aerodynamics and Applications, Boston, Massachusetts.
  • Elshaer, A., Bitsuamlak, G., & El Damatty, A. (2015). Aerodynamic shape optimization for corners of tall buildings using CFD. Paper presented at the 14th International conference on wind engineering, Porto Alegre, Brazil.
  • Foley, C.M. (2002). Recent advances in optimal structural design: Optimized performance-based design for buildings. Washington, DC: ASCE.
  • Fu, J. Y., Wu, B. G., Wu, J. R., Deng, T., Pi, Y. L., & Xie, Z. N. (2018b). Wind resistant size optimization of geometrically nonlinear lattice structures using a modified optimality criterion method. Engineering Structures, 173, 573-588. doi: https://doi.org/10.1016/j.engstruct.2018.07.017
  • Fu, J. Y., Wu, B. G., Xu, A., Wu, J. R., & Pi, Y. L. (2018c). A new method for frequency constrained structural optimization of tall buildings under wind loads. The Structural Design of Tall and Special Buildings, 27(18), e1549. doi: https://doi.org/10.1002/tal.1549
  • Fu, J., Zheng, Q., Huang, Y., Wu, J., Pi, Y., & Liu, Q. (2018a). Design optimization on high-rise buildings considering occupant comfort reliability and joint distribution of wind speed and direction. Engineering Structures, 156, 460-471. doi: https://doi.org/10.1016/j.engstruct.2017.11.041
  • Gomez, F., Spencer Jr, B. F., & Carrion, J. (2021). Topology optimization of buildings subjected to stochastic wind loads. Probabilistic Engineering Mechanics, 64, 103127. doi: https://doi.org/10.1016/j.probengmech.2021.103127
  • Google Scholar. Erişim Adresi: scholar.google.com, ET: 10.12.2021
  • He, E. M., Hu, Y. Q., & Zhang, Y. (2017). Optimization design of tuned mass damper for vibration suppression of a barge-type offshore floating wind turbine. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 231(1), 302-315. doi: https://doi.org/10.1177/1475090216642466
  • Huang, M. (2017). High-rise buildings under multi-hazard environment: Performance-based design optimization of wind-excited tall buildings. Singapore: Springer. doi: https://doi.org/10.1007/978-981-10-1744-5_7
  • Huang, M. F., Chan, C. M., & Lou, W. J. (2012). Optimal performance-based design of wind sensitive tall buildings considering uncertainties. Computers & Structures, 98, 7-16. doi: https://doi.org/10.1016/j.compstruc.2012.01.012
  • Huang, M. F., Li, Q., Chan, C. M., Lou, W. J., Kwok, K. C., & Li, G. (2015). Performance-based design optimization of tall concrete framed structures subject to wind excitations. Journal of Wind Engineering and Industrial Aerodynamics, 139, 70-81. doi: https://doi.org/10.1016/j.jweia.2015.01.005
  • Huang, M. F., Tse, K. T., Chan, C. M., & Lou, W. J. (2011). Integrated structural optimization and vibration control for improving wind-induced dynamic performance of tall buildings. International Journal of Structural Stability and Dynamics, 11(06), 1139-1161. doi: https://doi.org/10.1142/S021945541100452X
  • Jafari, M., & Alipour, A. (2021). Aerodynamic shape optimization of rectangular and elliptical double-skin façades to mitigate wind-induced effects on tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 213, 104586. doi: https://doi.org/10.1016/j.jweia.2021.104586
  • Jaouadi, Z., Abbas, T., Morgenthal, G., & Lahmer, T. (2020). Single and multi-objective shape optimization of streamlined bridge decks. Structural and Multidisciplinary Optimization, 61(4), 1495-1514. doi: https://doi.org/10.1007/s00158-019-02431-3
  • Jin, X., Xie, S., He, J., Lin, Y., Wang, Y., & Wang, N. (2018). Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm. Ocean Engineering, 167, 130-141. doi: https://doi.org/10.1016/j.oceaneng.2018.08.031
  • Kaveh, A., Javadi, S. M., & Moghanni, R. M. (2020). Optimal structural control of tall buildings using tuned mass dampers via chaotic optimization algorithm. Structures, 28, 2704-2713. doi: https://doi.org/10.1016/j.istruc.2020.11.002
  • Kim, B., Tse, K. T., Chen, Z., & Park, H. S. (2020). Multi-objective optimization of a structural link for a linked tall building system. Journal of Building Engineering, 31, 101382. doi: https://doi.org/10.1016/j.jobe.2020.101382
  • Li, Q. S., Zou, X. K., Wu, J. R., & Wang, Q. (2011). Integrated wind‐induced response analysis and design optimization of tall steel buildings using Micro‐GA. The Structural Design of Tall and Special Buildings, 20(8), 951-971. doi: https://doi.org/10.1002/tal.569
  • Li, S., Snaiki, R., & Wu, T. (2021). A knowledge‐enhanced deep reinforcement learning‐based shape optimizer for aerodynamic mitigation of wind‐sensitive structures. Computer‐Aided Civil and Infrastructure Engineering, 36(6), 733-746. doi: https://doi.org/10.1111/mice.12655
  • Li, Y., & Li, Q. S. (2016). Wind-induced response based optimal design of irregular shaped tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 155, 197-207. doi: https://doi.org/10.1016/j.jweia.2016.06.001
  • Li, Y., Duan, R. B., Li, Q. S., Li, Y. G., & Huang, X. (2020). Wind-resistant optimal design of tall buildings based on improved genetic algorithm. Structures, 27, 2182-2191. doi: https://doi.org/10.1016/j.istruc.2020.08.036
  • Liu, Z., Wang, Y., Hua, X., Zhu, H., & Zhu, Z. (2021). Optimization of wind turbine TMD under real wind distribution countering wake effects using GPU acceleration and machine learning technologies. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104436. doi: https://doi.org/10.1016/j.jweia.2020.104436
  • Momtaz, A.A., Abdollahian, M.A., & Farshidianfar, A. (2017). Study of wind-induced vibrations in tall buildings with tuned mass dampers taking into account vortices effects. International Journal of Advanced Structural Engineering, 9(4), 385–395. doi: https://doi.org/10.1007/s40091-017-0174-9
  • Mooneghi, M. A., & Kargarmoakhar, R. (2016). Aerodynamic mitigation and shape optimization of buildings. Journal Of Building Engineering, 6, 225-235. doi: https://doi.org/10.1016/j.jobe.2016.01.009
  • Park, S., Glade, M., & Lackner, M. A. (2020). Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of a floating offshore wind turbine. Engineering Structures, 209, 110260. doi: https://doi.org/10.1016/j.engstruct.2020.110260
  • Paul, R., & Dalui, S. (2021). Shape optimization to reduce wind pressure on the surfaces of a rectangular building with horizontal limbs. Periodica Polytechnica Civil Engineering, 65(1), 134-149. doi: https://doi.org/10.3311/PPci.16888
  • Qiu, Y., Yu, R., San, B., & Li, J. (2022). Aerodynamic shape optimization of large-span coal sheds for wind-induced effect mitigation using surrogate models. Engineering Structures, 253, 113818. doi: https://doi.org/10.1016/j.engstruct.2021.113818
  • Researchgate. Erişim Adresi: www.researchgate.net, ET: 10.12.2021
  • ScienceDirect. Erişim Adresi: www.sciencedirect.com, ET: 10.12.2021
  • Shahrouzi, M., Meshkat-Dini, A., & Azizi, A. (2015). Optimal wind resistant design of tall buildings utilizing mine blast algorithm. International Journal Of Optimization in Civil Engineering, 5(2), 137-150. Erişim Adresi: http://ijoce.iust.ac.ir/article-1-204-en.html
  • Spence, S. M.J., & Gioffrè, M. (2012). Large scale reliability-based design optimization of wind excited tall buildings. Probabilistic Engineering Mechanics, 28, 206-215. doi: https://doi.org/10.1016/j.probengmech.2011.08.001
  • Subgranon, A., & Spence, S. M. (2021). Performance-based Bi-objective optimization of structural systems subject to stochastic wind excitation. Mechanical Systems and Signal Processing, 160, 107893. doi: https://doi.org/10.1016/j.ymssp.2021.107893
  • Suthar, S. J., & Jangid, R. S. (2021). Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building. Structures, 33, 2675-2688. doi: https://doi.org/10.1016/j.istruc.2021.05.059
  • Tsavdaridis, K. D., Nicolaou, A., Mistry, A. D., & Efthymiou, E. (2020). Topology optimisation of lattice telecommunication tower and performance-based design considering wind and ice loads. Structures, 27, 2379-2399). doi: https://doi.org/10.1016/j.istruc.2020.08.010
  • Venanzi, I., Ubertini, F., & Materazzi, A. L. (2012). Optimal design of an array of active tuned mass dampers for wind‐exposed high‐rise buildings. Structural Control and Health Monitoring, 20(6), 903-917. doi: https://doi.org/10.1002/stc.1502
  • Wang, Q., Tian, H., Qiao, H., Tiwari, N. D., & Wang, Q. (2021). Wind-induced vibration control and parametric optimization of connected high-rise buildings with tuned liquid-column-damper–inerter. Engineering Structures, 226, 111352. doi: https://doi.org/10.1016/j.engstruct.2020.111352
  • Web of Science. Erişim Adresi: www.webofscience.com, ET: 10.12.2021
  • Whiteman, M. L., Fernández-Cabán, P. L., Phillips, B. M., Masters, F. J., Davis, J. R., & Bridge, J. A. (2021). Cyber-physical aerodynamic shape optimization of a tall building in a wind tunnel using an active fin system. Journal of Wind Engineering and Industrial Aerodynamics, 104835. doi: https://doi.org/10.1016/j.jweia.2021.104835
  • Xie, J. (2014). Aerodynamic optimization of super-tall buildings and its effectiveness assessment. Journal of Wind Engineering and Industrial Aerodynamics, 130, 88-98. doi: https://doi.org/10.1016/j.jweia.2014.04.004
  • Xu, A., & Zhao, R. H. (2020). Wind-resistant structural optimization of a supertall building with complex structural system. Structural and Multidisciplinary Optimization, 62(6), 3493-3506. doi: https://doi.org/10.1007/s00158-020-02652-x
  • Xu, A., Lin, H., Fu, J., & Sun, W. (2021). Wind-resistant structural optimization of supertall buildings based on high-frequency force balance wind tunnel experiment. Engineering Structures, 248, 113247. doi: https://doi.org/10.1016/j.engstruct.2021.113247
  • Xu, Y., Becker, T. C., & Guo, T. (2021). Design optimization of triple friction pendulums for high-rise buildings considering both seismic and wind loads. Soil Dynamics and Earthquake Engineering, 142, 106568. doi: https://doi.org/10.1016/j.soildyn.2020.106568
  • Zhang, R., Waibel, C., & Wortmann, T. (2020). Aerodynamic shape optimization for high-rise conceptual design-integrating and validating parametric design, (fast) fluid dynamics, structural analysis and optimization. Design and Computation of Urban and Local Systems, 1, 37-45. doi: https://doi.org/10.52842/conf.ecaade.2020.1.037
  • Zhao, L., Cui, W., Zhan, Y., Wang, Z., Liang, Y., & Ge, Y. (2020). Optimal structural design searching algorithm for cooling towers based on typical adverse wind load patterns. Thin-Walled Structures, 151, 106740. doi: https://doi.org/10.1016/j.tws.2020.106740
  • Zhao, X., Guo, J., Ma, H., & Ding, K. (2020). Integrated optimal wind‐resistant design of super‐tall structures with toggle‐brace damper systems. The Structural Design of Tall and Special Buildings, 29(16), e1799. doi: https://doi.org/10.1002/tal.1799
  • Zhu, Z., Lei, W., Wang, Q., Tiwari, N., & Hazra, B. (2020). Study on wind-induced vibration control of linked high-rise buildings by using TMDI. Journal of Wind Engineering and Industrial Aerodynamics, 205, 104306. doi: https://doi.org/10.1016/j.jweia.2020.104306

OPTIMUM DESIGN OF WIND RESISTANT STRUCTURES

Year 2023, , 931 - 954, 22.12.2023
https://doi.org/10.31796/ogummf.1140488

Abstract

Inappropriate architectural forms and increasing structural equipment with developing technology make the buildings more sensitive to the wind. This situation increases the interest in the field of wind resistant structure design (WRSD) which wind effects are considered as the major effects day by day. WRSD methodologies pose highly complex optimization problems. In this study, it is aimed to review the optimization studies in the field of WRSD. When the literature is examined, it has been seen that the subject can be examined under three sub-titles: aerodynamic shape optimization, structural optimization and optimization with the damping systems. In this context, fundamental and current studies that include algorithm-based optimization process are determined and their reviews are presented.

References

  • Abdelaziz, K. M., Alipour, A., & Hobeck, J. D. (2021). A smart façade system controller for optimized wind-induced vibration mitigation in tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 212, 104601. doi: https://doi.org/10.1016/j.jweia.2021.104601
  • Academia. Erişim Adresi: www.academia.edu, ET: 10.12.2021
  • Alkmim, M. H., Fabro, A. T., & de Morais, M. V. (2018). Optimization of a tuned liquid column damper subject to an arbitrary stochastic wind. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 511. doi: https://doi.org/10.1007/s40430-018-1471-3
  • Athanasiou, A., Stathopoulos, T., & Tirca, L. (2020). Discussion of “Performance-Based Wind-Resistant Optimization Design for Tall Building Structures” by Ting Deng, Jiyang Fu, Qingxing Zheng, Jiurong Wu, and Yonglin Pi. Journal of Structural Engineering, 146(8), 07020009. doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002754
  • Bernardini, E., Spence, S. M., Wei, D., & Kareem, A. (2015). Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach. Journal of Wind Engineering and Industrial Aerodynamics, 144, 154-164. doi: https://doi.org/10.1016/j.jweia.2015.03.011
  • Chan, C. M., & Huang, M. F. (2010). Optimal wind resistant performance-based design of tall buildings. Paper presented at the Structures Congress 2010: 19th Analysis and Computation Specialty Conference, Orlando, Florida.
  • Chan, C. M., Huang, M. F., & Kwok, K. C. (2010). Integrated wind load analysis and stiffness optimization of tall buildings with 3D modes. Engineering Structures, 32(5), 1252-1261. doi: https://doi.org/10.1016/j.engstruct.2010.01.001
  • Deng, T., Fu, J., Zheng, Q., Wu, J., & Pi, Y. (2019). Performance-based wind-resistant optimization design for tall building structures. Journal of Structural Engineering, 145(10), 04019103. doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002383
  • Ding, F., & Kareem, A. (2018). A multi-fidelity shape optimization via surrogate modeling for civil structures. Journal of Wind Engineering and Industrial Aerodynamics, 178, 49-56. doi: https://doi.org/10.1016/j.jweia.2018.04.022
  • Elshaer, A., Bitsuamlak, G. T., & El Damatty, A. (2016). Aerodynamic shape optimization of tall buildings using twisting and corner modifications. Paper presented at the 8th International Colloquium on Bluff Body Aerodynamics and Applications, Boston, Massachusetts.
  • Elshaer, A., Bitsuamlak, G., & El Damatty, A. (2015). Aerodynamic shape optimization for corners of tall buildings using CFD. Paper presented at the 14th International conference on wind engineering, Porto Alegre, Brazil.
  • Foley, C.M. (2002). Recent advances in optimal structural design: Optimized performance-based design for buildings. Washington, DC: ASCE.
  • Fu, J. Y., Wu, B. G., Wu, J. R., Deng, T., Pi, Y. L., & Xie, Z. N. (2018b). Wind resistant size optimization of geometrically nonlinear lattice structures using a modified optimality criterion method. Engineering Structures, 173, 573-588. doi: https://doi.org/10.1016/j.engstruct.2018.07.017
  • Fu, J. Y., Wu, B. G., Xu, A., Wu, J. R., & Pi, Y. L. (2018c). A new method for frequency constrained structural optimization of tall buildings under wind loads. The Structural Design of Tall and Special Buildings, 27(18), e1549. doi: https://doi.org/10.1002/tal.1549
  • Fu, J., Zheng, Q., Huang, Y., Wu, J., Pi, Y., & Liu, Q. (2018a). Design optimization on high-rise buildings considering occupant comfort reliability and joint distribution of wind speed and direction. Engineering Structures, 156, 460-471. doi: https://doi.org/10.1016/j.engstruct.2017.11.041
  • Gomez, F., Spencer Jr, B. F., & Carrion, J. (2021). Topology optimization of buildings subjected to stochastic wind loads. Probabilistic Engineering Mechanics, 64, 103127. doi: https://doi.org/10.1016/j.probengmech.2021.103127
  • Google Scholar. Erişim Adresi: scholar.google.com, ET: 10.12.2021
  • He, E. M., Hu, Y. Q., & Zhang, Y. (2017). Optimization design of tuned mass damper for vibration suppression of a barge-type offshore floating wind turbine. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 231(1), 302-315. doi: https://doi.org/10.1177/1475090216642466
  • Huang, M. (2017). High-rise buildings under multi-hazard environment: Performance-based design optimization of wind-excited tall buildings. Singapore: Springer. doi: https://doi.org/10.1007/978-981-10-1744-5_7
  • Huang, M. F., Chan, C. M., & Lou, W. J. (2012). Optimal performance-based design of wind sensitive tall buildings considering uncertainties. Computers & Structures, 98, 7-16. doi: https://doi.org/10.1016/j.compstruc.2012.01.012
  • Huang, M. F., Li, Q., Chan, C. M., Lou, W. J., Kwok, K. C., & Li, G. (2015). Performance-based design optimization of tall concrete framed structures subject to wind excitations. Journal of Wind Engineering and Industrial Aerodynamics, 139, 70-81. doi: https://doi.org/10.1016/j.jweia.2015.01.005
  • Huang, M. F., Tse, K. T., Chan, C. M., & Lou, W. J. (2011). Integrated structural optimization and vibration control for improving wind-induced dynamic performance of tall buildings. International Journal of Structural Stability and Dynamics, 11(06), 1139-1161. doi: https://doi.org/10.1142/S021945541100452X
  • Jafari, M., & Alipour, A. (2021). Aerodynamic shape optimization of rectangular and elliptical double-skin façades to mitigate wind-induced effects on tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 213, 104586. doi: https://doi.org/10.1016/j.jweia.2021.104586
  • Jaouadi, Z., Abbas, T., Morgenthal, G., & Lahmer, T. (2020). Single and multi-objective shape optimization of streamlined bridge decks. Structural and Multidisciplinary Optimization, 61(4), 1495-1514. doi: https://doi.org/10.1007/s00158-019-02431-3
  • Jin, X., Xie, S., He, J., Lin, Y., Wang, Y., & Wang, N. (2018). Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm. Ocean Engineering, 167, 130-141. doi: https://doi.org/10.1016/j.oceaneng.2018.08.031
  • Kaveh, A., Javadi, S. M., & Moghanni, R. M. (2020). Optimal structural control of tall buildings using tuned mass dampers via chaotic optimization algorithm. Structures, 28, 2704-2713. doi: https://doi.org/10.1016/j.istruc.2020.11.002
  • Kim, B., Tse, K. T., Chen, Z., & Park, H. S. (2020). Multi-objective optimization of a structural link for a linked tall building system. Journal of Building Engineering, 31, 101382. doi: https://doi.org/10.1016/j.jobe.2020.101382
  • Li, Q. S., Zou, X. K., Wu, J. R., & Wang, Q. (2011). Integrated wind‐induced response analysis and design optimization of tall steel buildings using Micro‐GA. The Structural Design of Tall and Special Buildings, 20(8), 951-971. doi: https://doi.org/10.1002/tal.569
  • Li, S., Snaiki, R., & Wu, T. (2021). A knowledge‐enhanced deep reinforcement learning‐based shape optimizer for aerodynamic mitigation of wind‐sensitive structures. Computer‐Aided Civil and Infrastructure Engineering, 36(6), 733-746. doi: https://doi.org/10.1111/mice.12655
  • Li, Y., & Li, Q. S. (2016). Wind-induced response based optimal design of irregular shaped tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 155, 197-207. doi: https://doi.org/10.1016/j.jweia.2016.06.001
  • Li, Y., Duan, R. B., Li, Q. S., Li, Y. G., & Huang, X. (2020). Wind-resistant optimal design of tall buildings based on improved genetic algorithm. Structures, 27, 2182-2191. doi: https://doi.org/10.1016/j.istruc.2020.08.036
  • Liu, Z., Wang, Y., Hua, X., Zhu, H., & Zhu, Z. (2021). Optimization of wind turbine TMD under real wind distribution countering wake effects using GPU acceleration and machine learning technologies. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104436. doi: https://doi.org/10.1016/j.jweia.2020.104436
  • Momtaz, A.A., Abdollahian, M.A., & Farshidianfar, A. (2017). Study of wind-induced vibrations in tall buildings with tuned mass dampers taking into account vortices effects. International Journal of Advanced Structural Engineering, 9(4), 385–395. doi: https://doi.org/10.1007/s40091-017-0174-9
  • Mooneghi, M. A., & Kargarmoakhar, R. (2016). Aerodynamic mitigation and shape optimization of buildings. Journal Of Building Engineering, 6, 225-235. doi: https://doi.org/10.1016/j.jobe.2016.01.009
  • Park, S., Glade, M., & Lackner, M. A. (2020). Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of a floating offshore wind turbine. Engineering Structures, 209, 110260. doi: https://doi.org/10.1016/j.engstruct.2020.110260
  • Paul, R., & Dalui, S. (2021). Shape optimization to reduce wind pressure on the surfaces of a rectangular building with horizontal limbs. Periodica Polytechnica Civil Engineering, 65(1), 134-149. doi: https://doi.org/10.3311/PPci.16888
  • Qiu, Y., Yu, R., San, B., & Li, J. (2022). Aerodynamic shape optimization of large-span coal sheds for wind-induced effect mitigation using surrogate models. Engineering Structures, 253, 113818. doi: https://doi.org/10.1016/j.engstruct.2021.113818
  • Researchgate. Erişim Adresi: www.researchgate.net, ET: 10.12.2021
  • ScienceDirect. Erişim Adresi: www.sciencedirect.com, ET: 10.12.2021
  • Shahrouzi, M., Meshkat-Dini, A., & Azizi, A. (2015). Optimal wind resistant design of tall buildings utilizing mine blast algorithm. International Journal Of Optimization in Civil Engineering, 5(2), 137-150. Erişim Adresi: http://ijoce.iust.ac.ir/article-1-204-en.html
  • Spence, S. M.J., & Gioffrè, M. (2012). Large scale reliability-based design optimization of wind excited tall buildings. Probabilistic Engineering Mechanics, 28, 206-215. doi: https://doi.org/10.1016/j.probengmech.2011.08.001
  • Subgranon, A., & Spence, S. M. (2021). Performance-based Bi-objective optimization of structural systems subject to stochastic wind excitation. Mechanical Systems and Signal Processing, 160, 107893. doi: https://doi.org/10.1016/j.ymssp.2021.107893
  • Suthar, S. J., & Jangid, R. S. (2021). Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building. Structures, 33, 2675-2688. doi: https://doi.org/10.1016/j.istruc.2021.05.059
  • Tsavdaridis, K. D., Nicolaou, A., Mistry, A. D., & Efthymiou, E. (2020). Topology optimisation of lattice telecommunication tower and performance-based design considering wind and ice loads. Structures, 27, 2379-2399). doi: https://doi.org/10.1016/j.istruc.2020.08.010
  • Venanzi, I., Ubertini, F., & Materazzi, A. L. (2012). Optimal design of an array of active tuned mass dampers for wind‐exposed high‐rise buildings. Structural Control and Health Monitoring, 20(6), 903-917. doi: https://doi.org/10.1002/stc.1502
  • Wang, Q., Tian, H., Qiao, H., Tiwari, N. D., & Wang, Q. (2021). Wind-induced vibration control and parametric optimization of connected high-rise buildings with tuned liquid-column-damper–inerter. Engineering Structures, 226, 111352. doi: https://doi.org/10.1016/j.engstruct.2020.111352
  • Web of Science. Erişim Adresi: www.webofscience.com, ET: 10.12.2021
  • Whiteman, M. L., Fernández-Cabán, P. L., Phillips, B. M., Masters, F. J., Davis, J. R., & Bridge, J. A. (2021). Cyber-physical aerodynamic shape optimization of a tall building in a wind tunnel using an active fin system. Journal of Wind Engineering and Industrial Aerodynamics, 104835. doi: https://doi.org/10.1016/j.jweia.2021.104835
  • Xie, J. (2014). Aerodynamic optimization of super-tall buildings and its effectiveness assessment. Journal of Wind Engineering and Industrial Aerodynamics, 130, 88-98. doi: https://doi.org/10.1016/j.jweia.2014.04.004
  • Xu, A., & Zhao, R. H. (2020). Wind-resistant structural optimization of a supertall building with complex structural system. Structural and Multidisciplinary Optimization, 62(6), 3493-3506. doi: https://doi.org/10.1007/s00158-020-02652-x
  • Xu, A., Lin, H., Fu, J., & Sun, W. (2021). Wind-resistant structural optimization of supertall buildings based on high-frequency force balance wind tunnel experiment. Engineering Structures, 248, 113247. doi: https://doi.org/10.1016/j.engstruct.2021.113247
  • Xu, Y., Becker, T. C., & Guo, T. (2021). Design optimization of triple friction pendulums for high-rise buildings considering both seismic and wind loads. Soil Dynamics and Earthquake Engineering, 142, 106568. doi: https://doi.org/10.1016/j.soildyn.2020.106568
  • Zhang, R., Waibel, C., & Wortmann, T. (2020). Aerodynamic shape optimization for high-rise conceptual design-integrating and validating parametric design, (fast) fluid dynamics, structural analysis and optimization. Design and Computation of Urban and Local Systems, 1, 37-45. doi: https://doi.org/10.52842/conf.ecaade.2020.1.037
  • Zhao, L., Cui, W., Zhan, Y., Wang, Z., Liang, Y., & Ge, Y. (2020). Optimal structural design searching algorithm for cooling towers based on typical adverse wind load patterns. Thin-Walled Structures, 151, 106740. doi: https://doi.org/10.1016/j.tws.2020.106740
  • Zhao, X., Guo, J., Ma, H., & Ding, K. (2020). Integrated optimal wind‐resistant design of super‐tall structures with toggle‐brace damper systems. The Structural Design of Tall and Special Buildings, 29(16), e1799. doi: https://doi.org/10.1002/tal.1799
  • Zhu, Z., Lei, W., Wang, Q., Tiwari, N., & Hazra, B. (2020). Study on wind-induced vibration control of linked high-rise buildings by using TMDI. Journal of Wind Engineering and Industrial Aerodynamics, 205, 104306. doi: https://doi.org/10.1016/j.jweia.2020.104306
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Review Articles
Authors

Soner Sezer 0000-0001-8116-3837

Murat Hiçyılmaz 0000-0002-4132-4285

Hakan Özbaşaran 0000-0003-1959-5297

Early Pub Date December 22, 2023
Publication Date December 22, 2023
Acceptance Date April 4, 2023
Published in Issue Year 2023

Cite

APA Sezer, S., Hiçyılmaz, M., & Özbaşaran, H. (2023). RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(4), 931-954. https://doi.org/10.31796/ogummf.1140488
AMA Sezer S, Hiçyılmaz M, Özbaşaran H. RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI. ESOGÜ Müh Mim Fak Derg. December 2023;31(4):931-954. doi:10.31796/ogummf.1140488
Chicago Sezer, Soner, Murat Hiçyılmaz, and Hakan Özbaşaran. “RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 4 (December 2023): 931-54. https://doi.org/10.31796/ogummf.1140488.
EndNote Sezer S, Hiçyılmaz M, Özbaşaran H (December 1, 2023) RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 4 931–954.
IEEE S. Sezer, M. Hiçyılmaz, and H. Özbaşaran, “RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 4, pp. 931–954, 2023, doi: 10.31796/ogummf.1140488.
ISNAD Sezer, Soner et al. “RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/4 (December 2023), 931-954. https://doi.org/10.31796/ogummf.1140488.
JAMA Sezer S, Hiçyılmaz M, Özbaşaran H. RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI. ESOGÜ Müh Mim Fak Derg. 2023;31:931–954.
MLA Sezer, Soner et al. “RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 4, 2023, pp. 931-54, doi:10.31796/ogummf.1140488.
Vancouver Sezer S, Hiçyılmaz M, Özbaşaran H. RÜZGÂRA DAYANIKLI YAPILARIN OPTİMUM TASARIMI. ESOGÜ Müh Mim Fak Derg. 2023;31(4):931-54.

20873 13565 13566 15461 13568  14913