Research Article
BibTex RIS Cite

A Tutorial On The Singular Value Decomposition

Year 1996, Volume: 9 Issue: 1, 1 - 12, 30.06.1996

Abstract

An m y, n real matm A can be factored as ITWV , where V and V are
orthonormal, and W is upper left diagonal. Thîs factorization is called Singular Vaîue
Decomposilion (SVD). The matrlces U, W, and V are usefül in characterizing ıhe malrix A. in
this manuscript geometric characterizations are emphasized. Geometric characîerizations are
anaîyzed in terms ofsubspaces, matrix scaling, cmd norms. We also presenî a numerical viewpoint
for SVD m orcfer to keep the maîerial setf-contained. in the last section we îreat a special problem
where action ofîhe matrix A is restncted to a gıven subspace.

References

  • [1] F. M. Caliler and C. A. Desoer, Multıvariahle Feedback Systems, Springcr-Verlag, 1982.
  • [2] D, S. Watkins, Fundamenlals ofMalm Compulalions, John Wiley and Sons, 1991.
  • [3]C.L. La.wsonandR, J. Haııson, Ao;vın^/, eaî(Sîuares7'ro6/ems, Prentice-Hall, 1974.
  • [4] G, W. Stewart, Inlroduclion loMatrjx Computalions, Academic Press, 1973,
  • [5] V. C. Klema and A. J. Laub, "The singular value decomposition; Its computation and some applications, " IEEE Trans. Aulomal. Contr., vo\. 25, pp. 164-176, Apr. 1980.
  • [6] M. G. Safonov, A. J. Laub and G. L. Hartmann, "Feedback properties ofmultivariable systems: The röle and use ofthe retum difîerence matrix, " IEEE Trans. Automat. Contr., vol. 26, pp. 47-65, Febr. 1981.
  • [7] N A. Lehtomaki, N. R. Sandell and M. Athans, "Robustness results in linear-quadratic gaussian based multivariable control design/'/££'£'7/'ö/îA'. Autöma/. Con//'., vol. 26, pp. 75-92, Febr. 1981,
  • [8] J. Vandewalîc and B. D. Moore, "On the use of singular value decomposition in identification and signal processing, " Numericaî Linear Algehra, Digıtaî Ssgnal Processing and Paralîel Algorithms, Edited by G. H. Golub and P. Van Dooren, Springer-Verlag, 1991.
  • [9] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, Cambridge Unİv. Press, 1991.
  • [10] J. G. F. Francis, "The QR transformation I, " Compııler Journal, pp. 265-271, 1961.
  • [11] J. G. F. Francis, "The QR transformation II, " CompulerJournal, pp. 332-345, 1962.
  • [12] J. H. Witkinson, The algebraic esgenvalue problem, CIarendon Press, Oxford, 1965.
  • [13] J. P. Chariier, M. Vanbegin, and P. Van Dooren, "On effıcienl implimentation of Kogbetliantz's algorithm for computmg singular value dccomposition, " Numerische Mathematik, pp. 279-300, 1988.

A Tutorial On The Singular Value Decomposition

Year 1996, Volume: 9 Issue: 1, 1 - 12, 30.06.1996

Abstract

An m y, n real matm A can be factored as ITWV , where V and V are

orthonormal, and W is upper left diagonal. Thîs factorization is called Singular Vaîue

Decomposilion (SVD). The matrlces U, W, and V are usefül in characterizing ıhe malrix A. in

this manuscript geometric characterizations are emphasized. Geometric characîerizations are

anaîyzed in terms ofsubspaces, matrix scaling, cmd norms. We also presenî a numerical viewpoint

for SVD m orcfer to keep the maîerial setf-contained. in the last section we îreat a special problem

where action ofîhe matrix A is restncted to a gıven subspace.

References

  • [1] F. M. Caliler and C. A. Desoer, Multıvariahle Feedback Systems, Springcr-Verlag, 1982.
  • [2] D, S. Watkins, Fundamenlals ofMalm Compulalions, John Wiley and Sons, 1991.
  • [3]C.L. La.wsonandR, J. Haııson, Ao;vın^/, eaî(Sîuares7'ro6/ems, Prentice-Hall, 1974.
  • [4] G, W. Stewart, Inlroduclion loMatrjx Computalions, Academic Press, 1973,
  • [5] V. C. Klema and A. J. Laub, "The singular value decomposition; Its computation and some applications, " IEEE Trans. Aulomal. Contr., vo\. 25, pp. 164-176, Apr. 1980.
  • [6] M. G. Safonov, A. J. Laub and G. L. Hartmann, "Feedback properties ofmultivariable systems: The röle and use ofthe retum difîerence matrix, " IEEE Trans. Automat. Contr., vol. 26, pp. 47-65, Febr. 1981.
  • [7] N A. Lehtomaki, N. R. Sandell and M. Athans, "Robustness results in linear-quadratic gaussian based multivariable control design/'/££'£'7/'ö/îA'. Autöma/. Con//'., vol. 26, pp. 75-92, Febr. 1981,
  • [8] J. Vandewalîc and B. D. Moore, "On the use of singular value decomposition in identification and signal processing, " Numericaî Linear Algehra, Digıtaî Ssgnal Processing and Paralîel Algorithms, Edited by G. H. Golub and P. Van Dooren, Springer-Verlag, 1991.
  • [9] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, Cambridge Unİv. Press, 1991.
  • [10] J. G. F. Francis, "The QR transformation I, " Compııler Journal, pp. 265-271, 1961.
  • [11] J. G. F. Francis, "The QR transformation II, " CompulerJournal, pp. 332-345, 1962.
  • [12] J. H. Witkinson, The algebraic esgenvalue problem, CIarendon Press, Oxford, 1965.
  • [13] J. P. Chariier, M. Vanbegin, and P. Van Dooren, "On effıcienl implimentation of Kogbetliantz's algorithm for computmg singular value dccomposition, " Numerische Mathematik, pp. 279-300, 1988.
There are 13 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

Abdurrahman Karamancıoğlu

Can Özdemir This is me

Publication Date June 30, 1996
Acceptance Date January 1, 1996
Published in Issue Year 1996 Volume: 9 Issue: 1

Cite

APA Karamancıoğlu, A., & Özdemir, C. (1996). A Tutorial On The Singular Value Decomposition. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 9(1), 1-12.
AMA Karamancıoğlu A, Özdemir C. A Tutorial On The Singular Value Decomposition. ESOGÜ Müh Mim Fak Derg. June 1996;9(1):1-12.
Chicago Karamancıoğlu, Abdurrahman, and Can Özdemir. “A Tutorial On The Singular Value Decomposition”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 9, no. 1 (June 1996): 1-12.
EndNote Karamancıoğlu A, Özdemir C (June 1, 1996) A Tutorial On The Singular Value Decomposition. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 9 1 1–12.
IEEE A. Karamancıoğlu and C. Özdemir, “A Tutorial On The Singular Value Decomposition”, ESOGÜ Müh Mim Fak Derg, vol. 9, no. 1, pp. 1–12, 1996.
ISNAD Karamancıoğlu, Abdurrahman - Özdemir, Can. “A Tutorial On The Singular Value Decomposition”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 9/1 (June 1996), 1-12.
JAMA Karamancıoğlu A, Özdemir C. A Tutorial On The Singular Value Decomposition. ESOGÜ Müh Mim Fak Derg. 1996;9:1–12.
MLA Karamancıoğlu, Abdurrahman and Can Özdemir. “A Tutorial On The Singular Value Decomposition”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 9, no. 1, 1996, pp. 1-12.
Vancouver Karamancıoğlu A, Özdemir C. A Tutorial On The Singular Value Decomposition. ESOGÜ Müh Mim Fak Derg. 1996;9(1):1-12.

20873  13565  13566 15461  13568    14913