Research Article
BibTex RIS Cite

ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT

Year 2023, Volume: 31 Issue: 3, 775 - 786, 16.12.2023
https://doi.org/10.31796/ogummf.1296740

Abstract

Noise causes many negative effects both in our daily life and working life, reduces our quality of life, and affects our mental health directly or indirectly. The most common consequence of noise exposure is especially permanent hearing loss called noise-induced hearing loss (NIHL). NIHL is very prevalent in almost every stage of the mining industry. Therefore, the assessment of noise levels of mining operations and the estimation of NIHLs of employees is an important issue to prevent and minimize them. This study is aimed to the modeling of NIHL prediction at a quarry located in Aksaray, Turkey. Initially, noise levels were measured with a sound level meter for employees working in different positions for the quarry, and daily exposure levels (Lex,8h) were determined. Audiometry tests were also performed on all employees and NIHLs were evaluated and determined by an audiometrist. According to the results, 5 employees had NIHL in this enterprise. A fuzzy inference system (FIS)-based NIHL estimating model implemented on fuzzy logic using the Sugeno inference mechanism was developed. The model predicts NIHLs for given occupation, age, experience, and Lex,8h parameters. To determine the accurate prediction ability of the model, field noise measurements and audiometry test results data were used. The obtained results indicated that the model has accurate a prediction ability with a 94% success rate. This study proposes a method with high predictive ability using fuzzy sets theory, and will be a guide for the top management in considering the damage effects of noise in enterprises.

References

  • Acaroglu, O., Ozdemir, L., & Asbury, B. (2008). A fuzzy logic model to predict specific energy requirement for TBM performance prediction. Tunn. Undergr. Space Technol. 23(5), 600-608. doi: https://doi.org/10.1016/j.tust.2007.11.003
  • Chadambuka, A., Mususa, F., & Muteti, S. (2013). Prevalence of noise induced hearing loss among employees at a mining industry in Zimbabwe. Afr. Health Sci., 13(4) 899-906. doi: http://dx.doi.org/10.4314/ahs.v13i4.6
  • Cinar, I., & Sensogut, C. (2009). Evaluation of Environmental Factors Affecting Noise Propagation. Environmental Monitoring and Assessment, 153, 377-382. doi: https://doi.org/10.1007/s10661-008-0364-9
  • Cinar, I., & Sensogut, C. (2013). Evaluation of noise measurements performed in mining sites for environmental aspects. International Journal of Environmental Research, 7(2), 383-386. Retrieved from https://ijer.ut.ac.ir/article_616_a7e43c6ed488624957059e7839a7659c.pdf
  • Çalış, S. (2022) Measurement in occupatıonal health and safety noise, Ankara: İKSAD Publishing House, ISBN: 978-625-8423-96-9. Retrieved from https://iksadyayinevi.com/wpcontent/uploads/2022/01/IS-SAGLIGI-VE-GUVENLIGINDE-OLCUM GURULTU.pdf.
  • Danish, E., & Onder, M. (2020). Application of fuzzy logic for predicting of mine fire in underground coal mine. Saf. Health Work 11(3), 322-334. https://doi.org/10.1016/j.shaw.2020.06.005
  • DIRECTIVE 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work [Internet]. Retrieved from https://oshwiki.eu/wiki/Noise#cite_note-Lit_31-
  • DIRECTIVE 2003/10/EC of 6 February 2003 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (noise) [Internet]. Retrieved from https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:042:0038:0044:EN:PDF
  • Dyussenbayev, A. (2017). Age periods of human life. Advances in Social Sciences Research Journal, 4(6). doi: https://doi.org/10.14738/assrj.46.2924
  • Erol, İ. (2022a). Investigation of noise and vibration exposure of underground coal mining machinery operators. Cukurova University Journal of the Faculty of Engineering, 37(1), 55-65. doi: https://doi.org/10.21605/cukurovaumfd.1094945
  • Erol, İ., (2022b). Investigation of occupational noise-induced hearing loss of underground coal mines. Mining, Metallurgy & Exploration, 39, 1045-1060 (2022). doi: https://doi.org/10.1007/s42461-022-00585-1
  • EU–OSHA. (2002) European Agency for Safety and Health at Work. Data to describe the link between OSH and employability [Internet]. Retrieved from https://osha.europa.eu/en/publications/report-data-describe-link-between-osh-and-employability-working-paper
  • EUROSTAT. (2001). European statistics on accidents at work (ESAW) methodology. 2001 Edition. Luxembourg: European Commission, Eurostat. Retrieved from http://www.hsa.ie/eng/Topics/Statistics/ESAW_Methodology.pdf
  • Fişne, A. (2008). Investigation of noise conditions, statistical analysis of noise exposure levels and risk assessment in Turkish Hard Coal Enterprise (Ph.D. thesis). Istanbul Technical University Graduate School of Natural and Applied Sciences, Istanbul (in Turkish)
  • Jang, R.J.S., Sun, C.T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing. Prentice-Hall, Upper Saddle River.
  • Kurşunoğlu, N. (2022). Estimation of coal seam methane contents using fuzzy logic method. Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University, 30(3), 471-480. doi: https://doi.org/10.31796/ogummf.1135126
  • Kuşan, H., Aytekin, O., & Özdemir, İ. (2010). The use of fuzzy logic in predicting house selling price. Expert Syst. with Appl., 37(3) 1808-1813. doi: https://doi.org/10.1016/j.eswa.2009.07.031
  • Mamdani, E.H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man–Machine Stud., 7(1), 1–13. doi: https://doi.org/10.1016/S0020-7373(75)80002-2
  • MAPEG. 2022. Retrieved from https://www.mapeg.gov.tr/maden_istatistik.aspx.
  • McBride, D.I. (2004). Noise-induced hearing loss and hearing conservation in mining. Occup. Med., 54(5), 290-296. doi: https://doi.org/10.1093/occmed/kqh075
  • Moroe, N., Khoza-Shangase, K., Kanji, A., & Ntlhakana, L. (2018). The management of occupational noise–induced hearing loss in the mining sector in Africa: A systematic review–1994 to 2016. Noise & Vibration Worldwide, 49(5), 181-190.
  • Mutlu, A. (2010). Determination of noise ınduced hearing lost in mining: a sample of stone crushing and screening plant (M.Sc. thesis) Eskisehir Osmangazi University Graduate School of Natural and Applied Sciences, Eskişehir (in Turkish)
  • Mutlu, M. & Sarı, M. (2017). Multi-criteria decision making methods and use of in mining industry. Scientific Mining Journal, 56(4), 181-196. doi: https://doi.org/10.30797/madencilik.391953
  • Mutlu, M. (2019) Classification of underground coal mine basins in Turkey with multicriteria decision making methods (Ph.D. thesis). Aksaray University Graduate School of Natural and Applied Sciences, Aksaray (in Turkish).
  • Mutlu, M., & Kalkan, M. (2023). Evaluation of psychosocial risk factors of quarrying crushed stone employees. Fırat University Journal of Engineering Science, 35(2), 443-453. doi: https://doi.org/10.35234/fumbd.1257734
  • Nanda, S.K., & Tripathy, D.P. (2007). Noise-induced hearing loss modelling using fuzzy system in mining industry. Noise & Vibr. Worldwide, 38(2), 11-19. doi: https://doi.org/10.1260/095745607780154336
  • Nanda, S.K., Tripathy, D.P., & Patra, S.K. (2008). A sugeno fuzzy model for noise induced hearing loss in the mining industry. Noise & Vibr. Worldwide, 39(10), 25-36. doi: https://doi.org/10.1260/095745608786927368
  • Nanda, S.K, Tripathy, D.P., & Patra, S.K. (2009). Fuzzy inference system-based noise prediction models for opencast mines. Int. J. of Min., Reclam. Environ., 23(4), 242-260. doi: https://doi.org/10.1080/17480930802613969
  • Official Gazette. 2013. Regulation on protection of employees from noise noise-induced risks. No. 28721. Retrieved from https://www.resmigazete.gov.tr/eskiler/2013/07/20130728-11.htm
  • Onder, M., Onder, S., & Mutlu, A. (2012). Determination of noise induced hearing loss in mining: an application of hierarchical loglinear modelling. Environ. Monit. Assess., 184(4), 2443-2451. doi: https://doi.org/10.1007/s10661-011-2129-0
  • Onder, M., Iroz, B.D., & Onder, S. (2022). Investigation of factors affecting hearing loss of open pit coal mine employees with categorical data analyses. Scientific Mining Journal, 61(1), 19-24. doi: https://doi.org/10.30797/madencilik.977752
  • Önder, S. (2018) Investigation of noise induced hearing loss with logistic regression analyses in an underground metal mine. Cukurova University Journal of the Faculty of Engineering, 33(3), 11-22. doi: https://doi.org/10.21605/cukurovaummfd.500496
  • Önder, S., & İbrahimoğlu, F. (2021). Evaluation of noise induced hearing loss of a marble factory employees according to TS 2607 standard. Scientific Mining Journal, 60(2), 107-113. doi: https://doi.org/10.30797/madencilik.796800
  • Pathak, K. (1996). Modelling and prediction of environmental noise levels near mechanised surface mines and quarries (Ph.D. Thesis), Imperial College, London.
  • Picard, M., Girard, S. A., Simard, M., Larocque, R., Leroux, T., & Turcotte, F. (2008). Association of work-related accidents with noise exposure in the workplace and noise-ınduced hearing loss based on the experience of some 240,000 person-years of observation. Accident Analysis & Prevention, 40(5), 1644-1652. doi: https://doi.org/10.1016/j.aap.2008.05.013
  • Razani, M., Yazdani-Chamzini, A., & Yakhchali, S.H. (2013). A novel fuzzy inference system for predicting roof fall rate in underground coal mines. Saf. Sci., 55, 26-33. doi: https://doi.org/10.1016/j.ssci.2012.11.008
  • Sensogut, C., & Cinar, I. (2007). An empirical model for the noise propagation in open cast mines–A case study. Appl. Acoust., 68(9), 1026-1035. doi: https://doi.org/10.1016/j.apacoust.2006.04.016
  • Sugeno, M., & Kang, G.T. (1988). Structure identification of fuzzy model. Fuzzy Sets Syst., 28(1), 15-33. doi: https://doi.org/10.1016/0165-0114(88)90113-3
  • Sylaios, G. K., Gitsakis, N., Koutroumanidis, T., & Tsihrintzis, V. A. (2008). CHLfuzzy: a spreadsheet tool for the fuzzy modeling of chlorophyll concentrations in coastal lagoons. Hydrobiologia, 610, 99-112. doi: https://doi.org/10.1007/s10750-008-9358-4
  • Şensöğüt, C., & Çınar, İ. (2006). Investigation of the noise propagation in the surface mines by a model developed. Mining, 45(3) 37-33. Retrieved from http://www.mining.org.tr/en/download/articlefile/375505
  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132. doi: https://doi.org/10.1109/TSMC.1985.6313399
  • TS 2607 ISO 1999. (2005). Acoustics - Determination of occupational noise exposure and estimation of noise-induced hearing impairment. ISO, Ankara (in Turkish).
  • TS EN ISO 9612. (2015). Measurement of Noise Exposure in Acoustic Working Environment and Principles for Evaluation" standards. Ankara (in Turkish).
  • TS ISO 1999. (2020). Estimation of Acoustic-Noise-induced hearing loss. ISO, Ankara (in Turkish).
  • Zadeh, L.A. (1965). Fuzzy sets. Inf. and Control, 8(3), 338–353. doi: https://doi.org/10.1016/S0019-9958(65)90241-X

BULANIK ORTAMDA GÜRÜLTÜYE BAĞLI İŞİTME KAYIPLARININ TAHMİN EDİLMESİ

Year 2023, Volume: 31 Issue: 3, 775 - 786, 16.12.2023
https://doi.org/10.31796/ogummf.1296740

Abstract

Gürültü, hem günlük yaşamımızda, hem de çalışma hayatımızda birçok olumsuz etkilere neden olmakta, yaşam kalitemizi düşürmekte ve ruh sağlığımızı doğrudan veya dolaylı yoldan etkilemektedir. Gürültüye maruz kalmanın en yaygın sonucu, özellikle gürültüye bağlı işitme kaybı adı verilen kalıcı işitme kaybıdır. Gürültüye bağlı işitme kaybı madencilik sektörünün hemen her aşamasında çok yaygındır. Bu nedenle, maden işletmelerinde gürültü düzeylerinin değerlendirilmesi ve çalışanların gürültüye bağlı işitme kayıplarının tahmini, bunların önlenmesi ve en aza indirilmesi için önemli bir konudur. Bu çalışma, Türkiye'de Aksaray ilinde bulunan bir taş ocağında gürültüye bağlı işitme kaybının tahmininin modellenmesini amaçlamaktadır. Başlangıçta taş ocağı için farklı pozisyonlarda çalışan işçiler için gürültü ölçüm cihazı ile gürültü ölçümleri yapılmış ve günlük gürültü maruziyetleri (Lex,8h) belirlenmiştir. Ayrıca tüm çalışanlara odyometrik testler uygulanmış ve gürültüye bağlı işitme kayıpları bir odyometrist ile birlikte değerlendirilmiş ve belirlenmiştir. Sonuçlara göre, bu işletmede 5 çalışanda gürültüye bağlı işitme kaybı mevcuttur. Sugeno çıkarım mekanizmasıyla bulanık mantık üzerinde uygulanan bir bulanık çıkarım sistemi tabanlı gürültüye bağlı işitme kaybı tahmin modeli geliştirilmiştir. Model, verilen meslek, yaş, deneyim ve Lex,8h parametrelerini kullanarak gürültüye bağlı işitme kayıplarını tahmin etmektedir. Modelin doğru tahmin yeteneğini belirleyebilmek için, sahadaki gürültü ölçümleri ve odyometrik test sonuçları verileri kullanılmıştır. Elde edilen sonuçlar, modelin %94 başarı oranı ile doğru tahmin yeteneğine sahip olduğunu göstermiştir. Bu çalışma, bulanık kümeler teorisini kullanarak doğru tahmin yeteneği yüksek bir yöntem önermektedir ve işletmelerde gürültünün olumsuz etkilerini dikkate almada üst yönetim için bir rehber olacaktır.

References

  • Acaroglu, O., Ozdemir, L., & Asbury, B. (2008). A fuzzy logic model to predict specific energy requirement for TBM performance prediction. Tunn. Undergr. Space Technol. 23(5), 600-608. doi: https://doi.org/10.1016/j.tust.2007.11.003
  • Chadambuka, A., Mususa, F., & Muteti, S. (2013). Prevalence of noise induced hearing loss among employees at a mining industry in Zimbabwe. Afr. Health Sci., 13(4) 899-906. doi: http://dx.doi.org/10.4314/ahs.v13i4.6
  • Cinar, I., & Sensogut, C. (2009). Evaluation of Environmental Factors Affecting Noise Propagation. Environmental Monitoring and Assessment, 153, 377-382. doi: https://doi.org/10.1007/s10661-008-0364-9
  • Cinar, I., & Sensogut, C. (2013). Evaluation of noise measurements performed in mining sites for environmental aspects. International Journal of Environmental Research, 7(2), 383-386. Retrieved from https://ijer.ut.ac.ir/article_616_a7e43c6ed488624957059e7839a7659c.pdf
  • Çalış, S. (2022) Measurement in occupatıonal health and safety noise, Ankara: İKSAD Publishing House, ISBN: 978-625-8423-96-9. Retrieved from https://iksadyayinevi.com/wpcontent/uploads/2022/01/IS-SAGLIGI-VE-GUVENLIGINDE-OLCUM GURULTU.pdf.
  • Danish, E., & Onder, M. (2020). Application of fuzzy logic for predicting of mine fire in underground coal mine. Saf. Health Work 11(3), 322-334. https://doi.org/10.1016/j.shaw.2020.06.005
  • DIRECTIVE 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work [Internet]. Retrieved from https://oshwiki.eu/wiki/Noise#cite_note-Lit_31-
  • DIRECTIVE 2003/10/EC of 6 February 2003 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (noise) [Internet]. Retrieved from https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:042:0038:0044:EN:PDF
  • Dyussenbayev, A. (2017). Age periods of human life. Advances in Social Sciences Research Journal, 4(6). doi: https://doi.org/10.14738/assrj.46.2924
  • Erol, İ. (2022a). Investigation of noise and vibration exposure of underground coal mining machinery operators. Cukurova University Journal of the Faculty of Engineering, 37(1), 55-65. doi: https://doi.org/10.21605/cukurovaumfd.1094945
  • Erol, İ., (2022b). Investigation of occupational noise-induced hearing loss of underground coal mines. Mining, Metallurgy & Exploration, 39, 1045-1060 (2022). doi: https://doi.org/10.1007/s42461-022-00585-1
  • EU–OSHA. (2002) European Agency for Safety and Health at Work. Data to describe the link between OSH and employability [Internet]. Retrieved from https://osha.europa.eu/en/publications/report-data-describe-link-between-osh-and-employability-working-paper
  • EUROSTAT. (2001). European statistics on accidents at work (ESAW) methodology. 2001 Edition. Luxembourg: European Commission, Eurostat. Retrieved from http://www.hsa.ie/eng/Topics/Statistics/ESAW_Methodology.pdf
  • Fişne, A. (2008). Investigation of noise conditions, statistical analysis of noise exposure levels and risk assessment in Turkish Hard Coal Enterprise (Ph.D. thesis). Istanbul Technical University Graduate School of Natural and Applied Sciences, Istanbul (in Turkish)
  • Jang, R.J.S., Sun, C.T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing. Prentice-Hall, Upper Saddle River.
  • Kurşunoğlu, N. (2022). Estimation of coal seam methane contents using fuzzy logic method. Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University, 30(3), 471-480. doi: https://doi.org/10.31796/ogummf.1135126
  • Kuşan, H., Aytekin, O., & Özdemir, İ. (2010). The use of fuzzy logic in predicting house selling price. Expert Syst. with Appl., 37(3) 1808-1813. doi: https://doi.org/10.1016/j.eswa.2009.07.031
  • Mamdani, E.H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man–Machine Stud., 7(1), 1–13. doi: https://doi.org/10.1016/S0020-7373(75)80002-2
  • MAPEG. 2022. Retrieved from https://www.mapeg.gov.tr/maden_istatistik.aspx.
  • McBride, D.I. (2004). Noise-induced hearing loss and hearing conservation in mining. Occup. Med., 54(5), 290-296. doi: https://doi.org/10.1093/occmed/kqh075
  • Moroe, N., Khoza-Shangase, K., Kanji, A., & Ntlhakana, L. (2018). The management of occupational noise–induced hearing loss in the mining sector in Africa: A systematic review–1994 to 2016. Noise & Vibration Worldwide, 49(5), 181-190.
  • Mutlu, A. (2010). Determination of noise ınduced hearing lost in mining: a sample of stone crushing and screening plant (M.Sc. thesis) Eskisehir Osmangazi University Graduate School of Natural and Applied Sciences, Eskişehir (in Turkish)
  • Mutlu, M. & Sarı, M. (2017). Multi-criteria decision making methods and use of in mining industry. Scientific Mining Journal, 56(4), 181-196. doi: https://doi.org/10.30797/madencilik.391953
  • Mutlu, M. (2019) Classification of underground coal mine basins in Turkey with multicriteria decision making methods (Ph.D. thesis). Aksaray University Graduate School of Natural and Applied Sciences, Aksaray (in Turkish).
  • Mutlu, M., & Kalkan, M. (2023). Evaluation of psychosocial risk factors of quarrying crushed stone employees. Fırat University Journal of Engineering Science, 35(2), 443-453. doi: https://doi.org/10.35234/fumbd.1257734
  • Nanda, S.K., & Tripathy, D.P. (2007). Noise-induced hearing loss modelling using fuzzy system in mining industry. Noise & Vibr. Worldwide, 38(2), 11-19. doi: https://doi.org/10.1260/095745607780154336
  • Nanda, S.K., Tripathy, D.P., & Patra, S.K. (2008). A sugeno fuzzy model for noise induced hearing loss in the mining industry. Noise & Vibr. Worldwide, 39(10), 25-36. doi: https://doi.org/10.1260/095745608786927368
  • Nanda, S.K, Tripathy, D.P., & Patra, S.K. (2009). Fuzzy inference system-based noise prediction models for opencast mines. Int. J. of Min., Reclam. Environ., 23(4), 242-260. doi: https://doi.org/10.1080/17480930802613969
  • Official Gazette. 2013. Regulation on protection of employees from noise noise-induced risks. No. 28721. Retrieved from https://www.resmigazete.gov.tr/eskiler/2013/07/20130728-11.htm
  • Onder, M., Onder, S., & Mutlu, A. (2012). Determination of noise induced hearing loss in mining: an application of hierarchical loglinear modelling. Environ. Monit. Assess., 184(4), 2443-2451. doi: https://doi.org/10.1007/s10661-011-2129-0
  • Onder, M., Iroz, B.D., & Onder, S. (2022). Investigation of factors affecting hearing loss of open pit coal mine employees with categorical data analyses. Scientific Mining Journal, 61(1), 19-24. doi: https://doi.org/10.30797/madencilik.977752
  • Önder, S. (2018) Investigation of noise induced hearing loss with logistic regression analyses in an underground metal mine. Cukurova University Journal of the Faculty of Engineering, 33(3), 11-22. doi: https://doi.org/10.21605/cukurovaummfd.500496
  • Önder, S., & İbrahimoğlu, F. (2021). Evaluation of noise induced hearing loss of a marble factory employees according to TS 2607 standard. Scientific Mining Journal, 60(2), 107-113. doi: https://doi.org/10.30797/madencilik.796800
  • Pathak, K. (1996). Modelling and prediction of environmental noise levels near mechanised surface mines and quarries (Ph.D. Thesis), Imperial College, London.
  • Picard, M., Girard, S. A., Simard, M., Larocque, R., Leroux, T., & Turcotte, F. (2008). Association of work-related accidents with noise exposure in the workplace and noise-ınduced hearing loss based on the experience of some 240,000 person-years of observation. Accident Analysis & Prevention, 40(5), 1644-1652. doi: https://doi.org/10.1016/j.aap.2008.05.013
  • Razani, M., Yazdani-Chamzini, A., & Yakhchali, S.H. (2013). A novel fuzzy inference system for predicting roof fall rate in underground coal mines. Saf. Sci., 55, 26-33. doi: https://doi.org/10.1016/j.ssci.2012.11.008
  • Sensogut, C., & Cinar, I. (2007). An empirical model for the noise propagation in open cast mines–A case study. Appl. Acoust., 68(9), 1026-1035. doi: https://doi.org/10.1016/j.apacoust.2006.04.016
  • Sugeno, M., & Kang, G.T. (1988). Structure identification of fuzzy model. Fuzzy Sets Syst., 28(1), 15-33. doi: https://doi.org/10.1016/0165-0114(88)90113-3
  • Sylaios, G. K., Gitsakis, N., Koutroumanidis, T., & Tsihrintzis, V. A. (2008). CHLfuzzy: a spreadsheet tool for the fuzzy modeling of chlorophyll concentrations in coastal lagoons. Hydrobiologia, 610, 99-112. doi: https://doi.org/10.1007/s10750-008-9358-4
  • Şensöğüt, C., & Çınar, İ. (2006). Investigation of the noise propagation in the surface mines by a model developed. Mining, 45(3) 37-33. Retrieved from http://www.mining.org.tr/en/download/articlefile/375505
  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132. doi: https://doi.org/10.1109/TSMC.1985.6313399
  • TS 2607 ISO 1999. (2005). Acoustics - Determination of occupational noise exposure and estimation of noise-induced hearing impairment. ISO, Ankara (in Turkish).
  • TS EN ISO 9612. (2015). Measurement of Noise Exposure in Acoustic Working Environment and Principles for Evaluation" standards. Ankara (in Turkish).
  • TS ISO 1999. (2020). Estimation of Acoustic-Noise-induced hearing loss. ISO, Ankara (in Turkish).
  • Zadeh, L.A. (1965). Fuzzy sets. Inf. and Control, 8(3), 338–353. doi: https://doi.org/10.1016/S0019-9958(65)90241-X
There are 45 citations in total.

Details

Primary Language English
Subjects Occupational Health and Safety in Mines
Journal Section Research Articles
Authors

Mert Mutlu 0000-0002-6040-1186

Early Pub Date December 16, 2023
Publication Date December 16, 2023
Acceptance Date July 24, 2023
Published in Issue Year 2023 Volume: 31 Issue: 3

Cite

APA Mutlu, M. (2023). ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(3), 775-786. https://doi.org/10.31796/ogummf.1296740
AMA Mutlu M. ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT. ESOGÜ Müh Mim Fak Derg. December 2023;31(3):775-786. doi:10.31796/ogummf.1296740
Chicago Mutlu, Mert. “ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 3 (December 2023): 775-86. https://doi.org/10.31796/ogummf.1296740.
EndNote Mutlu M (December 1, 2023) ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 3 775–786.
IEEE M. Mutlu, “ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 3, pp. 775–786, 2023, doi: 10.31796/ogummf.1296740.
ISNAD Mutlu, Mert. “ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/3 (December 2023), 775-786. https://doi.org/10.31796/ogummf.1296740.
JAMA Mutlu M. ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT. ESOGÜ Müh Mim Fak Derg. 2023;31:775–786.
MLA Mutlu, Mert. “ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 3, 2023, pp. 775-86, doi:10.31796/ogummf.1296740.
Vancouver Mutlu M. ESTIMATING THE NOISE-INDUCED HEARING LOSSES UNDER FUZZY ENVIRONMENT. ESOGÜ Müh Mim Fak Derg. 2023;31(3):775-86.

20873  13565  13566 15461  13568    14913