GFRP DONATILARIN ÇEKME TESTİ İÇİN YENİ BİR YAKLAŞIM
Year 2023,
Volume: 31 Issue: 3, 826 - 833, 16.12.2023
Kerem Aybar
,
Meltem Eryılmaz Yıldırım
,
Mehmet Canbaz
Abstract
Çekme testi, geleneksel çelik donatıya alternatif olarak kullanılan Cam Elyaf Takviyeli Polimer (GFRP) çubukların Mekanik özelliklerin değerlendirilmesinde kritik bir rol oynamaktadır. GFRP çubuklar için test standartlarının geliştirilmesi için yapılan araştırmalar önemli bir aşamaya gelmiş olmasına rağmen, çelik donatıların testlerine kıyasla, bu testlerin uygulanması genellikle daha çok sayıda numune ve özel ekipman gerektirmektedir. GFRP çekme testleri için bu çalışmada, çelik donatılar için kullanılan mevcut test ekipmanlarının kullanıldığı yeni bir yöntem önerilmektedir. Geliştirilen bu yenilikçi yaklaşım, GFRP takviye elemanlarının mekanik özelliklerinin değerlendirilmesi için pratik ve maliyet-etkin bir çözüm sunmaktadır. Bu test yöntemi, GFRP çubukların betonarme yapılarda daha yaygın olarak kullanılmasını kolaylaştırarak verimliliği artırmayı ve sürdürülebilir inşaat uygulamalarının ilerlemesine katkıda bulunmayı hedeflemektedir.
References
- Al-Salloum, Y. A., El-Gamal, S., Almusallam, T. H., Alsayed, S. H., & Aqel, M. (2013). Effect of harsh environmental conditions on the tensile properties of GFRP bars. Composites Part B: Engineering, 45(1), 835–844. https://doi.org/10.1016/j.compositesb.2012.05.004
- ASTM D7205/D7205M-21. (2021). Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars.
- Bakis, C. E., Bank, L. C., Brown, V. L., Cosenza, E., Davalos, J. F., Lesko, J. J., Machida, A., Rizkalla, S. H., & Triantafillou, T. C. (2002). Fiber-reinforced polymer composites for construction - State-of-the-art review. Journal of Composites for Construction, 6(2), 73–87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
- Balendran, R. V., Rana, T. M., Maqsood, T., & Tang, W. C. (2002). Application of FRP bars as reinforcement in civil engineering structures. Structural Survey, 20(2), 62–72. https://doi.org/10.1108/02630800210433837
- Benmokrane, B., Chaallal, O., & Masmoudi, R. (1995). Glass fibre reinforced plastic (GFRP) rebars for concrete structures. Construction and Building Materials, 9(6), 353–364. https://doi.org/10.1016/0950-0618(95)00048-8
- CNR-DT 203/2006. (2007). Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars (Issue June).
- CSA S806-12. (2012). Design and Construction of Building Structures with Fibre-Reinforced Polymers. Canadian Standards Association.
- D’Antino, T., & Pisani, M. A. (2023). Tensile and compressive behavior of thermoset and thermoplastic GFRP bars. Construction and Building Materials, 366(December 2022), 130104. https://doi.org/10.1016/j.conbuildmat.2022.130104
- Feng, G., Zhu, D., Guo, S., Rahman, M. Z., Jin, Z., & Shi, C. (2022). A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions. Cement and Concrete Composites, 134, 104758. https://doi.org/10.1016/j.cemconcomp.2022.104758
- Gudonis, E., Timinskas, E., Gribniak, V., Kaklauskas, G., Arnautov, A. K., & Tamulėnas, V. (2014). Frp Reinforcement for Concrete Structures: State-of-the-Art Review of Application and Design. Engineering Structures and Technologies, 5(4), 147–158. https://doi.org/10.3846/2029882x.2014.889274
- JSCE-E 531. (1995). Test Method for Tensile Properties of Continuous Fiber Reinforcing Materials.
- Kocaoz, S., Samaranayake, V. A., & Nanni, A. (2005). Tensile characterization of glass FRP bars. Composites Part B: Engineering, 36(2), 127–134. https://doi.org/10.1016/j.compositesb.2004.05.004
- Kodur, V., Venkatachari, S., Matsagar, V. A., & Singh, S. B. (2022). Test Methods for Characterizing the Properties of Fiber-Reinforced Polymer Composites at Elevated Temperatures. Polymers, 14(9), 1734. https://doi.org/10.3390/polym14091734
- Kumar, M. H., Mohandoss, P., & Anjana, L. (2023). Investigation on tensile and creep behaviour of glass fiber reinforced polymer (GFRP) bars: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.656
- Liu, Y., Zhang, H.-T., Zhao, H.-H., Lu, L., Han, M.-Y., Wang, J.-C., & Guan, S. (2021). Experimental Study on Mechanical Properties of Novel FRP Bars with Hoop Winding Layer. Advances in Materials Science and Engineering, 2021, 1–18. https://doi.org/10.1155/2021/9554687
- Lu, C., Yang, Y., & He, L. (2021). Mechanical and durability properties of GFRP bars exposed to aggressive solution environments. Science and Engineering of Composite Materials, 28(1), 11–23. https://doi.org/10.1515/secm-2021-0002
- Micelli, F., & Nanni, A. (2001). Mechanical properties and durability of FRP rods. In CIES Report 00-22 (Issue March). Taylor & Francis. http://www.crcnetbase.com/doi/10.1201/9780203883440.ch65
- Nanni, A. (1993). Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures. In A. Nanni (Ed.), Canadian Journal of Civil Engineering. Elsevier. https://doi.org/10.1016/C2009-0-09136-3
- Spagnuolo, S., Meda, A., Rinaldi, Z., & Nanni, A. (2018). Residual behaviour of glass FRP bars subjected to high temperatures. Composite Structures, 203, 886–893. https://doi.org/10.1016/j.compstruct.2018.07.077
- Spagnuolo, S., Rinaldi, Z., Donnini, J., & Nanni, A. (2021). Physical, mechanical and durability properties of GFRP bars with modified acrylic resin (modar) matrix. Composite Structures, 262, 113557. https://doi.org/10.1016/j.compstruct.2021.113557
- Wiater, A., & Siwowski, T. (2020). Comparison of Tensile Properties of Glass Fibre Reinforced Polymer Rebars by Testing According to Various Standards. Materials, 13(18), 4110. https://doi.org/10.3390/ma13184110
- You, Y. J., Kim, J. H. J., Park, K. T., Seo, D. W., & Lee, T. H. (2017). Modification of rule of mixtures for tensile strength estimation of circular GFRP rebars. Polymers, 9(12). https://doi.org/10.3390/polym9120682
A NEW APPROACH TO TENSILE TESTING OF GFRP BARS
Year 2023,
Volume: 31 Issue: 3, 826 - 833, 16.12.2023
Kerem Aybar
,
Meltem Eryılmaz Yıldırım
,
Mehmet Canbaz
Abstract
Tensile testing is a critical procedure for evaluating the mechanical properties of Glass Fiber Reinforced Polymer (GFRP) bars, which emerged as an alternative to traditional steel reinforcement in reinforced concrete structures. While significant research has led to the development of testing standards for GFRP bars, their implementation often necessitates additional specimens and specialized equipment compared to their steel counterparts. This study proposes a new method for conducting GFRP tensile tests using standard equipment designed for conventional structural steel rebar testing. By employing existing devices, our approach offers a practical and cost-effective solution for assessing the tensile properties of GFRP reinforcement. This simplified testing method aims to enhance efficiency, facilitate wider adoption of GFRP bars in reinforced concrete structures, and contribute to the advancement of sustainable construction practices.
References
- Al-Salloum, Y. A., El-Gamal, S., Almusallam, T. H., Alsayed, S. H., & Aqel, M. (2013). Effect of harsh environmental conditions on the tensile properties of GFRP bars. Composites Part B: Engineering, 45(1), 835–844. https://doi.org/10.1016/j.compositesb.2012.05.004
- ASTM D7205/D7205M-21. (2021). Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars.
- Bakis, C. E., Bank, L. C., Brown, V. L., Cosenza, E., Davalos, J. F., Lesko, J. J., Machida, A., Rizkalla, S. H., & Triantafillou, T. C. (2002). Fiber-reinforced polymer composites for construction - State-of-the-art review. Journal of Composites for Construction, 6(2), 73–87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
- Balendran, R. V., Rana, T. M., Maqsood, T., & Tang, W. C. (2002). Application of FRP bars as reinforcement in civil engineering structures. Structural Survey, 20(2), 62–72. https://doi.org/10.1108/02630800210433837
- Benmokrane, B., Chaallal, O., & Masmoudi, R. (1995). Glass fibre reinforced plastic (GFRP) rebars for concrete structures. Construction and Building Materials, 9(6), 353–364. https://doi.org/10.1016/0950-0618(95)00048-8
- CNR-DT 203/2006. (2007). Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars (Issue June).
- CSA S806-12. (2012). Design and Construction of Building Structures with Fibre-Reinforced Polymers. Canadian Standards Association.
- D’Antino, T., & Pisani, M. A. (2023). Tensile and compressive behavior of thermoset and thermoplastic GFRP bars. Construction and Building Materials, 366(December 2022), 130104. https://doi.org/10.1016/j.conbuildmat.2022.130104
- Feng, G., Zhu, D., Guo, S., Rahman, M. Z., Jin, Z., & Shi, C. (2022). A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions. Cement and Concrete Composites, 134, 104758. https://doi.org/10.1016/j.cemconcomp.2022.104758
- Gudonis, E., Timinskas, E., Gribniak, V., Kaklauskas, G., Arnautov, A. K., & Tamulėnas, V. (2014). Frp Reinforcement for Concrete Structures: State-of-the-Art Review of Application and Design. Engineering Structures and Technologies, 5(4), 147–158. https://doi.org/10.3846/2029882x.2014.889274
- JSCE-E 531. (1995). Test Method for Tensile Properties of Continuous Fiber Reinforcing Materials.
- Kocaoz, S., Samaranayake, V. A., & Nanni, A. (2005). Tensile characterization of glass FRP bars. Composites Part B: Engineering, 36(2), 127–134. https://doi.org/10.1016/j.compositesb.2004.05.004
- Kodur, V., Venkatachari, S., Matsagar, V. A., & Singh, S. B. (2022). Test Methods for Characterizing the Properties of Fiber-Reinforced Polymer Composites at Elevated Temperatures. Polymers, 14(9), 1734. https://doi.org/10.3390/polym14091734
- Kumar, M. H., Mohandoss, P., & Anjana, L. (2023). Investigation on tensile and creep behaviour of glass fiber reinforced polymer (GFRP) bars: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.656
- Liu, Y., Zhang, H.-T., Zhao, H.-H., Lu, L., Han, M.-Y., Wang, J.-C., & Guan, S. (2021). Experimental Study on Mechanical Properties of Novel FRP Bars with Hoop Winding Layer. Advances in Materials Science and Engineering, 2021, 1–18. https://doi.org/10.1155/2021/9554687
- Lu, C., Yang, Y., & He, L. (2021). Mechanical and durability properties of GFRP bars exposed to aggressive solution environments. Science and Engineering of Composite Materials, 28(1), 11–23. https://doi.org/10.1515/secm-2021-0002
- Micelli, F., & Nanni, A. (2001). Mechanical properties and durability of FRP rods. In CIES Report 00-22 (Issue March). Taylor & Francis. http://www.crcnetbase.com/doi/10.1201/9780203883440.ch65
- Nanni, A. (1993). Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures. In A. Nanni (Ed.), Canadian Journal of Civil Engineering. Elsevier. https://doi.org/10.1016/C2009-0-09136-3
- Spagnuolo, S., Meda, A., Rinaldi, Z., & Nanni, A. (2018). Residual behaviour of glass FRP bars subjected to high temperatures. Composite Structures, 203, 886–893. https://doi.org/10.1016/j.compstruct.2018.07.077
- Spagnuolo, S., Rinaldi, Z., Donnini, J., & Nanni, A. (2021). Physical, mechanical and durability properties of GFRP bars with modified acrylic resin (modar) matrix. Composite Structures, 262, 113557. https://doi.org/10.1016/j.compstruct.2021.113557
- Wiater, A., & Siwowski, T. (2020). Comparison of Tensile Properties of Glass Fibre Reinforced Polymer Rebars by Testing According to Various Standards. Materials, 13(18), 4110. https://doi.org/10.3390/ma13184110
- You, Y. J., Kim, J. H. J., Park, K. T., Seo, D. W., & Lee, T. H. (2017). Modification of rule of mixtures for tensile strength estimation of circular GFRP rebars. Polymers, 9(12). https://doi.org/10.3390/polym9120682