Review
BibTex RIS Cite

BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER

Year 2023, Volume: 31 Issue: 4, 1028 - 1044, 22.12.2023
https://doi.org/10.31796/ogummf.1348428

Abstract

Beton teknolojisinde her geçen gün gelişen yeniliklerin uygulamaya girmekte olduğu görülmektedir. Bu makalede beton teknolojisinde son zamanlarda yaygın olarak kullanılmaya başlanmış yeniliklerin bazıları anlatılmıştır. Yeniliklerin bazıları beton üretiminde kullanılan malzemelerle, bazıları ise özellikle gelişen dijital teknolojinin betonlara uygulanmasıyla ilgili olmaktadır. Uygulamada betonların işlenebilirlik, dayanım ve dayanıklılığında oldukça önemli gelişmeler olduğundan bunların ilgilenenlere tanıtılması yararlı olacaktır. Makalede yeni nesil çimento esaslı betonlar başlığı altında sırasıyla, 3D yazıcı ile üretilen betonlar, nano teknolojik ultra yüksek dayanımlı betonlar, kendi kendini ısıtan ve soğutan betonlar, kendi kendini kür eden betonlar, kendi kendini tamir eden betonlar, atık agregalı betonlar, Mars betonu, ultra hafif betonlar, kendini temizleyen betonlar, bükülebilir beton, eko beton (yeşil beton), yarı saydam ve geçirgen beton, nesnelerin interneti (RIFID) teknolojili beton ve çimento bulamacı emdirilmiş lifli betonlardaki (SIFCON) konular hakkında yeni gelişmeler literatüre bağlı olarak açıklanmış, bu yeniliklerin getirdiği avantajlar tanıtılmaya çalışılmıştır.

References

  • ACI (308-213) R-13 (2022). Report on Internally Cured Concrete using Pre-Wetted Absorptive Lightweight Aggregate. American Concrete Institute.
  • Alqahtani, F.K., Abotaleb, I.S., ElMenshawy, M. (2021). Life cycle cost analysis of lightweight green concrete utilizing recycled plastic aggregates. Journal of Building Engineering, 40, 102670. doi: https://doi.org/10.1016/j.jobe.2021.102670
  • Althoeya, F., Zaidb, O., Arbilic M.M., Martínez-Garcíad, R., Alhamamia, A., Shahe, H.A., Yosri, A.M. (2023). Physical, strength, durability and microstructural analysis of self-healing concrete: A systematic review. Case Studies in Construction Materials, 18, e01730.doi:https://doi.org/10.1016/j.cscm.2022.e01730
  • Anjuma, T., Dongre, P., Misbah, F., Nanyam, V.P.S.N. (2017). Purview of 3DP in the Indian Built Environment Sector. Procedia Engineering, 196, 228-35. doi: https://doi.org/10.1016/j.proeng.2017.07.194
  • Baduge, S.K., Navaratnam, S., Zidan, Y.A., McCormack, T., Nguyen, K., Mendis, P., Zhang, G., Aye, L. (2021). Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures, 29, 1597-609. doi: https://doi.org/10.1016/j.istruc.2020.12.061
  • Balaguru, P., Kendzulak, J. (1986). Flexural behavior of slurry infiltrated fiber concrete (SIFCON) made using condensed silica fume. International Concrete, 91, 1215-1230.
  • Bashandy, A.A., Meleka, N.N., Hamad, M.M. (2017). Comparative study on the using of PEG and PAM as curing agents for self-curing concrete. Challenge Journal of Concrete Research Letters, 8(1), 1-10. doi: https://doi.org/10.20528/cjcrl.2017.01.001
  • Bentz, D.P., Lura, P. Roberts, J.W. (2005). Mixture proportioning for internal curing. Reprinted from the Concrete International, 27(2), 35-40.
  • Bentz, D.P., Weiss, W.J. (2011). Internal curing: A 2010 state-of-the-art review, U.S. Department of Commerce, NISTIR 7765. doi: https://doi.org/10.6028/NIST.IR.7765
  • Bilek, V., Kersner, Z., Schmid, P., Mosler, T. (2002). The possibility of self-curing concrete. Proceedings of the International Conference of Innovations and Developments in Concrete Materials and Construction, 51-60.
  • Buswell, R., Soar, R., Gibb, A., Thorpe, A. (2007). Freeform construction: mega-scale rapid manufacturing for construction. Automation in Construction, 16(2), 224-231. doi: https://doi.org/10.1016/j.autcon.2006.05.002
  • Canbaz, M., Ünivar, C. (2015). Lif ve çimento türünün SIFCON özeliklerine etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 400-404.
  • Chahal, N., Siddique, R., Rajor, A. (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Construction and Building Materials, 28, 351–356. doi: https://doi.org/10.1016/j.conbuildmat.2011.07.042
  • Chand, M.S.R., Giri, P.S.N.R., Kumar, P.R., Kumar, G.R., Raveena, C. (2016). Effect of self-curing chemicals in self-compacting mortars. Construction and Building Materials, 107, 356-364. doi: https://doi.org/10.1016/j.conbuildmat.2016.01.018
  • Chinzorigt, G., Lim, M.K., Yu, M., Lee, H., Enkbold, O., Choi, D. (2020). Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate. Cement and Concrete Research, 136, 106062. doi: https://doi.org/10.1016/j.cemconres.2020.106062
  • Chu, S.H., Li, L.G., Kwan, A.K.H. (2021). Development of extrudable high strength fiber reinforced concrete incorporating nano calcium carbonate. Additive Manufacturing, 37, 101617. doi: https://doi.org/10.1016/j.addma.2020.101617
  • Duan, Z., Singh, A., Xiao, J., Hou, S. (2020). Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete. Construction and Building Materials, 254, 119323. doi: https://doi.org/10.1016/j.conbuildmat.2020.119323
  • Edvardsen, C. (1999). Water permeability and autogenous healing of cracks in concrete. ACI Material of Journal, 96, 448-454.
  • Elansary, A.A., Ashmawy, M.M., Abdalla, H.A. (2021). Effect of recycled coarse aggregate on physical and mechanical properties of concrete. Advances in Structural Engineering, 24(3), 583-595. doi:https://doi.org/10.1177/1369433220963792
  • El-Dieb, A.S. (2007). Self-curing concrete: Water retention, hydration and moisture transport. Construction and Building Materials, 21, 1282-1287. doi: https://doi.org/10.1016/j.conbuildmat.2006.02.007
  • El-Dieb, A.S., El-Maaddawy, T. A. (2020). Performance of self-curing concrete as affected by different curing regimes. Advances in Concrete Construction, 9(1), 33-41. doi: https://doi.org/10.12989/acc.2020.9.1.033
  • Elsener, B. (2005). Corrosion rate of steel in concrete-measurements beyond the Tafel law. Corrosion Science, 47, 3019-3033. doi: https://doi.org/10.1016/j.corsci.2005.06.021
  • Estarque, M. (2020). D´eficit habitacional e populaç˜ao de rua crescentes desafiam gest˜ao Bolsonaro. Erişim linki:https://www1.folha.uol.com.br/cotidiano/201 8/11/deficit-habitacional-e-populacao-de-rua-crescentes-desafiam-nova-gestao.
  • Fang, X.L., Xuan, D.X., Zhan, B.J., Li, W.F., Poon, C.S. (2021). A novel upcycling technique of recycled cement paste powder by a two-step carbonation process, Journal of Cleaner Production, 290, 125192. doi:https://doi.org/10.1016/j.jclepro.2020.125192
  • Feng, J., Su, Y., Qian, C. (2019). Couple defect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete, Construction and Building Materials, 228, 116-810. doi: https://doi.org/10.1016/j.conbuildmat.2019.116810
  • Florida, R., Schneider, B. (2018). The Global Housing Crisis. Erişim linki: https://www.citylab.com/ equity/2018/04/the-global-housingcrisis/ 557639/.
  • Ghale Noee, A., Nasiri Rajabli, J. (2023). The effect of nano-silica powder on mechanical and non-mechanical characteristics of self-consolidating concrete (SCC) and its impact on environment protection. Innov. Infrastruct. Solut., 8, 166. doi:https://doi.org/10.1007/s41062-023-01128-3
  • Ghiasvand, H., Bastami, M., Farokhzad, R. (2022). Enhancing the internal curing process of self-compacting concrete containing lightweight aggregate and chemical additives. European Journal of Environmental and Civil Engineering, 1-19. doi:https://doi.org/10.1080/19648189.2022.2026824
  • Gonzalez-Corominas, A., Etxeberria, M., Poon, C.S: (2016). Influence of steam curing on the pore structures and mechanical properties of fly-ash high performance concrete prepared with recycled aggregates. Cement and Concrete Composites, 71, 77-84. doi:https://doi.org/10.1016/j.cemconcomp.2016.05.010
  • Gopalakrishnan, R., Nithiyanantham, S. (2020). Effect of ZnO Nanoparticles on cement mortar for enhancing the physico-chemical, mechanical and related properties. Advanced Science, Engineering and Medicine, 12(3), 348-355. doi: https://doi.org/10.1166/asem.2020.2505
  • Gosselin, C., Duballet, R., Roux, P. (2016). Large-scale 3D printing of ultra-high performance concrete-a new processing route for architects and builders, Mater Des., 100, 102–109.
  • He, B., Gao, Y., Qu, L., Duan, K., Zhou, W., Pei, G. (2019). Characteristics analysis of self-luminescent cement-based composite materials with self-cleaning effect. Journal of Cleaner Production, 225, 1169-1183. https://doi.org/10.1016/j.jclepro.2019.03.291
  • Henk, M. Jonkers, A. (2010). Bacteria mediated remediation of concrete structures. 2nd International Symposium on Service Life Design for structures, e-ISBN: 978-2-35158-097-4 830-840.
  • Hocaoglu, İ. (2022). Investigation of the effect of current in zeolite-graphene oxide additives of mortar and development of a novel method for determining the setting time. Journal of Building Engineering, 46, 103803. doi:https://doi.org/10.1016/j.jobe.2021.103803
  • Hocaoğlu, I. (2021). Self-heating mortars with using graphene oxide and increasing CSH gel formation with the direct current application. Revista de la Construcción. Journal of Construction, 20(3), 559-575. doi: https://doi.org/10.7764/RDLC.20.3.559
  • Hocaoğlu, İ. (2023). Grafen oksit katkılı yeni nesil harçlarda dozaj ve doğru akım şiddetinin etkilerinin araştırılması, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 38 (1), 421-434. doi: ttps://doi.org/10.17341/gazimmfd.940271
  • https://malzemebilimi.net/cimentoicermeyenbukulebilir-beton-uretildi.html, 27 Temmuz 2023.
  • https://precast.org/2020/08/selfcleaningconcrete/#:~:text=Titanium%20dioxide%20activates%20in%20the,pollutants%20on%20the%20concrete%20surface
  • https://theconstructor.org/concrete/flexiblebendable-concrete-composition-application/36008/ 28 Temmuz 2023.
  • https://www.ekoyapidergisi.org/alternatif-malzemeler-yari-saydam-beton-transparan-beton, 9 Şubat 2022.
  • https://www.ftmmachinery.com/blog/how-to-make recycled-concrete-aggregate-and-what-is-it-usedfor.html, 1 Ağustos, 2023.
  • https://www.specifyconcrete.org/blog/eco-friendly-alternatives-to-traditional-concrete, 28 Temmuz 2023.
  • https://www.techinside.com/bukulebilir-beton gelistirdi/
  • https://www.zekiyildirim.com.tr/ebis-elektronik-beton-izleme-sistemi-nedir-cipli-beton-nedir, 28 Temmuz 2023.
  • Jieting, X., Xiao, Q., Zhenying, H., Yongkang, L., Ben, L., Zhengzhuan, X. (2022). Effect of superabsorbent polymer (SAP) internal curing agent on carbonation resistance and hydration performance of cement concrete. Advances in Materials Science and Engineering, 3485373, 1-13. doi:https://doi.org/10.1155/2022/3485373
  • Johann, S., Strangfeld, C., Müller, M., Mieller, B., Bartholmai, M. (2017). RFID sensor systems embedded in concrete– requirements for long–term operation. Materials Today: Proceedings, 4, 5827–5832. doi: https://doi.org/10.1016/j.matpr.2017.06.053
  • Juergen, H. (2007). A new system for translucent concrete-Application Potentials. Proceedings, 51, 28-29.
  • Kamal, M.M., Safan, M.A., Bashandy, A.A., Khalil, A.M. (2018). Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete. Journal of Building Engineering, 16, 79-93. doi:https://doi.org/10.1016/j.jobe.2017.12.012
  • Kauppila, I. (2022). 3D concrete printing – The ultimate guide, updated Feb 16, 2022, Erişim adresi: https://all3dp.com/1/3d-concrete-printing-guide
  • Kazemian, F., Rooholamini, H., Hassani, A. (2019). Mechanical and fracture properties of concrete containing treated and untreated recycled concrete aggregates. Construction and Building Materials, 209, 690-700. doi: https://doi.org/10.1016/j.conbuildmat.2019.03.179
  • Kazmi, S.M.S., Munir, M.J., Wu, Y.F., Patnaikuni, I., Zhou, Y.W., Xing, F. (2020). Effect of recycled aggregate treatment techniques on the durability of concrete: A comparative evaluation. Construction and Building Materials, 264, 120284. doi: https://doi.org/10.1016/j.conbuildmat.2020.120284
  • Le, T.T., Austin, S.A., Lim, S., Buswell, R.A. Gibb, A.G.F., Thorpe, T. (2012). Hardened properties of high performance printing concrete, Cement and Concrete Research, 42(3), 558-566.
  • Lee, Y.S., Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied Microbiology and Biotechnology, 102, 3059–3070. doi:https://doi.org/10.1007/s00253-018-8830-y
  • Li, V.C., Herbert, E. (2012). Robust self-healing concrete for sustainable infrastructure. Journal of Advanced Concrete Technology, 10(6), 207-218. doi: https://doi.org/10.3151/jact.10.207
  • Li, X., Korayem, A.H., Li, C., Liu, Y., He, H., Sanjayan, J.G., Duan, W.H. (2016). Incorporation of graphene oxide and silica fume into cement paste: a study of dispersion and compressive strength, Construction and Building Materials, 123, 327-335. doi: https://doi.org/10.1016/j.conbuildmat.2016.07.022
  • Likes, L., Markandeya, A., Haider, M.M., Bollinger, D., McCloy, J.S.., Nassiri, S. (2022). Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. Journal of Cleaner Production, 364, 132651. doi: https://doi.org/10.1016/j.jclepro.2022.132651
  • Lim, S., Buswell, R.A., Le, T.T. (2012). Developments in construction-scale additive manufacturing processes. Autom Constr., 21, 262-268.
  • Lokeshwari, M., Pavan, B.R., Bandakli, S.R., Tarun, P., Sachin, Kumar, V. (2021). A review on self-curing concrete. Materials today: Proceedings, 43(2), 2259-2264.doi:https://doi.org/10.1016/j.matpr.2020.12.859
  • Losonczi, A. (2010). Translucent building block and a method for manufacturing The same. US Patent Application Publication, America.
  • Martinez-Garcia, R., Rojas, M.I.S., Jagadesh, P., Lopez-Gayarre, F., Moran-del-Pozo, J.M., Juan-Valdes, A. (2022). Effect of pores on the mechanical and durability properties on high strength recycled fine aggregate mortar. Case Studies in Construction Materials, 16, e01050. doi:https://doi.org/10.1016/j.cscm.2022.e01050
  • Mazari, M., Aval, S.F., Rodriguez-Nikl, T. (2020). Evaluating the use of recycled and sustainable materials in self-consolidating concrete for underground infrastructure applications. University Transportation Center for Underground Transportation Infrastructure. California State University. Erişim adresi: https://rosap.ntl.bts.gov/view/dot/59164
  • Mechtcherine, V., Bos, F.P., Perrot, A., Leal da Silva, W.R., Nerella, V.N., Fataei, S., Wolfs, R:,J.M., Sonebi, M., Roussel, N. (2020). Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research, 132, 106037. doi: https://doi.org/10.1016/j.cemconres.2020.106037
  • Mechtcherine, V., Nerella, V., Will, F., Näther, M., Otto, J., Krause, M. (2019). Large-scale digital concrete construction -CONPrint3D concept for on-site, monolithic 3Dprinting. Automation in Construction, 107, 102933. doi: https://doi.org/10.1016/j.autcon.2019.102933
  • Mehta, P.K. (1999). Advancements in concrete technology, Point of View: Reflections About Technology Choices, 69-76.
  • Memon, S.A., Bekzhanova, Z., Murzakarimova, A. (2022). A Review of improvement of interfacial transition zone and adherent mortar in recycled concrete aggregate, Buildings, 12(10), 1600. doi:https://doi.org/10.3390/buildings12101600
  • Mousavi, M. A., Sadeghi-Nik, A., Bahari, A., Ashour, A., Khayat, K.H. (2022). Cement paste modified by nano-montmorillonite and carbon nanotubes. ACI Materials Journal, 119, 173-185. doi:https://doi.org/10.14359/51734612
  • Mousavi, M.A., Sadeghi-Nik, A., Bahari, A., Jin, C., Ahmed, R., Ozbakkaloglu, T., Brito, J. (2021). Strength optimization of cementitious composites reinforced by carbon nanotubes and titania nanoparticles. Construction and Building Materials, 303, 124510. doi:https://doi.org/10.1016/j.conbuildmat.2021.124510
  • Nachiar, S., Sekar, A., Sarjune, N.A., Kumaresan, M. (2023). Effect of steel fiber in SIFCON using GGBS as binder replacement, Materials Today: Proceedings, 93, 1-8. https://doi.org/10.1016/j.matpr.2023.07.281
  • Nano-particles. (2023). Erişim adresi: https://nanografi.com/popular-products/
  • Neeladharan, C., Anbarasan, M., Sathish, P. (2018) Experimental investigation on bendable concrete by using admixtures. Suraj Punj Journal for Multidisciplinary Research, 8, 11, 69-78.
  • Nielsen, C.V., Glavind, M. (2007). Danish experiences with a decade of green concrete. Journal of Advanced Concrete Technology, 5(1), 3-12.
  • Nik, A.S., Bahari, A. (2011). Nano-particles in concrete and cement mixtures. Applied Mechanics and Materials, (110-116), 3853–3855. doi:https://doi.org/10.4028/www.scientific.net/AMM.110-116.3853
  • Ohemeng, E.A., Ekolu, S.O. (2020). Comparative analysis on costs and benefits of producing natural and recycled concrete aggregates: A South African case study. Case Studies in Construction Materials, 13, e00450.doi:https://doi.org/10.1016/j.cscm.2020.e00450
  • Pacheco, J., Brito, J., Chastre, C., Evangelista, L. (2019). Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates. Construction and Building Materials, 201, 110-120. doi:https://doi.org/10.1016/j.conbuildmat.2018.12.200
  • Pacheco-Torgal, F.P., Labrincha, J.A. (2012). The future of construction materials research and the seventh un millennium development goal: A few insights. Construction and Building Materials, 40, 729-737. doi: https://doi.org/10.1016/j.conbuildmat.2012.11.007
  • Pangdaeng, S., Phoo-Ngernkham, T., Sata, V., Chindaprasirt, P. (2014). Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Materials and Design, 53, 269-274. doi:https://doi.org/10.1016/j.matdes.2013.07.018
  • Patil, H.S., Raijiwala, D.B., Prashant, H., Vijay, B. (2008). Bacterial concrete-a self-healing concrete. International Journal of Applied Engineering Research, 3(12), 1719.
  • Qin, L., Gao, X.J. (2019). Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation. Waste Management, 89, 254-264. doi: https://doi.org/10.1016/j.wasman.2019.04.018
  • Reches, Y. (2019). Concrete on Mars: Options, challenges, and solutions for binder-based construction on the Red Planet. Cement and Concrete Composites, 104, 103349. doi:https://doi.org/10.1016/j.cemconcomp.2019.103349
  • Resmi Gazete, 4708 sayılı yapı denetimi hakkında kanun kapsamında denetimi yürütülen yapılara ait taze betondan numune alınması, deneylerinin yapılması, raporlanması süreçlerinin izlenmesi ve denetlenmesine dair tebliğ, Sayı 30629, Aralık 18, 2018.
  • Sağlam, R. N., Ulaş, M. A., Alyamaç, K.E. (2022). Hafif beton üretimi için gerekli olan hafif agrega miktarının yapay sinir ağı ile tahmin edilmesi. Fırat Üniv. Mühendislik Bilimleri Dergisi, 34(2), 889-898. doi: https://doi.org/10.35234/fumbd.1133877
  • Samani, A.K., Attart, M.M. (2014). Lateral strain model for concrete under compression. ACI Structural Journal, 44.-453. doi: https://doi.org/10.14359.51686532
  • Sanchez, F., Sobolev, K. (2010). Nanotechnology in Concrete-A Review. Construction and Building Materials, 24, 2060-2071. doi:https://doi.org/10.1016/j.conbuildmat.2010.03.014
  • Sasanipour, H., Aslani, F. (2020). Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates. Construction and Building Materials, 236, 117540. doi: https://doi.org/10.1016/j.conbuildmat.2019.117540
  • Schutter, G.D., Lesage, K., Mechtcherine, V, Nerella, V.N., Habert, G., Agusti-Juan, I. (2018). Vision of 3D printing with concrete-technical, economic and environmental potentials. Cement and Concrete Research,112, 25–36. doi: https://doi.org/10.1016/j.cemconres.2018.06.001
  • Seifan, M., Mendoza, S., Berenjian, A. (2022). Effect of nano and micro iron oxide particles on the workability, strength and absorption rate of cement mortar containing fly ash. European Journal of Environmental and Civil Engineering, 26, 3898- 3912. https://doi.org/10.1080/19648189.2020.1824822
  • Servatmand, A., Şimşek O. (2018). Yüksek performanslı harç üretiminde optimum nano malzeme oranlarının belirlenmesi, Politeknik Dergisi, 21(2), 327-332.
  • Shah, C.R., Jadhav, R.A., Patil, S.S., Agrawal, A.C., Patil, S.N., Sawant, K.P. (2017). Rainwater harvesting and reducing water logging problem by using permeable concrete, International Journal of Modern Trends in Engineering and Research, 4, 150-154.
  • Shanghai opens world’s longest 3D-printed concrete bridge, 2019, Erişim adresi: https:// edition.cnn.com/style/article/shanghai-3d-printed-bridge-scli-intl/index.html
  • Shen, W., Zhang, C., Li, Q., Zhang, W., Cao, L., Ye, J. (2015). Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete. Journal of Cleaner Production, 87, 762-765. doi:https://doi.org/10.1016/j.jclepro.2014.10.014
  • Song, H.W., Saraswathy, V. (2007). Corrosion monitoring of reinforced concrete structures – a review. Intern. Journal of Electrochemical Science, 2: 1-28.
  • Spiesz, P.R., Hunger, M. (2017). Structural ultra-lightweight concrete – from laboratory research to field trials. H. Justnes, & H. Braarud (Eds.), Proceedings of the 11th High Performance Concrete conference, HPC Tromso, 1-10.
  • Spiesz, P.R., Hunger, M. (2017). Structural ultra-lightweight concrete – from laboratory research to field trials. In H. Justnes, & H. Braarud (Eds.), Proceedings of the 11th High Performance Concrete conference, HPC Tromso 2017, 1-10.
  • Suhendro, B. (2014). Toward green concrete for better sustainable environment, Procedia Engineering, 95, 2014, 305-320. doi:https://doi.org/10.1016/j.proeng.2014.12.190
  • Sun, C., Chen, L.L., Xiao, J.Z., Singh, A., Zeng, J.H. (2021). Compound utilization of construction and industrial waste as cementitious recycled powder in mortar, Resources, Conservation and Recycling, 170, 105561. doi:https://doi.org/10.1016/j.resconrec.2021.105561
  • Tang, Q., Ma, Z.M., Wu, H.X., Wang, W. (2020). The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical review. Cement and Concrete Composites, 114, 103807. doi: https://doi.org/10.1016/j.cemconcomp.2020.103807
  • Topçu, İ.B. (1997). Physical and mechanical properties of concretes produced with waste concrete. Cement and Concrete Research, 27(12), 1817-1823. doi:https://doi.org/10.1016/S00088846(97)00190-7
  • Topçu, İ.B. (1998). Hafif Beton Özeliklerinin Kompozit Malzeme Olarak İncelenmesi, Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü, Mart 1988, İstanbul.
  • Topçu, İ.B., Akkan, E., Uygunoğlu, T. (2020). Self-Cleaning Concretes: An Overview. Cement Based Composites, 2, 6-11. doi: https://doi.org/10.36937/cebacom.2020.002.002
  • Topçu, I.B., Günçan, N.F. (1995). Using waste concrete as aggregates. Cement and Concrete Research, 25(7), 1385-1390. doi:https://doi.org/10.1016/0008-8846(95)00131-U
  • Topçu, İ.B., Hocaoğlu, İ., Kara, İ. (2023). Ultra Hafif Betonda Güncel Gelişmeler. International Journal of Engineering Research and Development, 15 (2), 689-703. doi: https://doi.org/10.29137/umagd.1286178
  • Topçu, İ.B., Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete, Journal of Materials Processing Technology, 204(1-3), 34-38. doi: https://doi.org/10.1016/j.jmatprotec.2007.10.052
  • Topçu, İ.B., Şengel, S. (2004). Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research, 34(8), 1307-1312. doi:https://doi.org/10.1016/j.cemconres.2003.12.019
  • Topçu, İ.B., Uygunoğlu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108-4116. doi:https://doi.org/10.1016/j.buildenv.2006.11.024
  • Topçu, İ.B., Uygunoğlu, T. (2016). Saydam Betonların Özellikleri Üzerine Bir İnceleme, Teknik Dergi, 7469-7475.
  • Türkiye Bina Deprem Yönetmeliği, (2018). 18 Mart 2018 tarihli ve 30364 sayılı mükerrer Resmi Gazete, Afet ve Acil Yönetimi Başkanlığı, Ankara.
  • Ünal, S., Canbaz, M. (2022). Effect of industrial wastes on self-cleaning properties of concrete containing anatase-TiO2. Revista de la Construcción. Journal of Construction, 21(2), 493-505. https://doi.org/10.7764/RDLC.21.3.493
  • Uygunoğlu T., Kılçık F.M., Topçu İ.B. (2021). Nesnelerin internetinin (IoT) inşaat mühendisliğindeki rolü: gömülü sensör kullanım. International Journal of 3D Printing Technologies and Digital Industry, 5(3), 390-399. doi:https://doi.org/10.46519/ij3dptdi.948567
  • Uygunoğlu, T., Topçu, İ.B. (2020). The role of internet of things (IoT) in civil engineering: RFID Applications. International Journal of 3D Printing Technologies Digital Industry, 4(3), 270-277. Erişim Linki: https://dergipark.org.tr/en/pub/ij3dptdi/archive
  • Uygunoğlu, T., Topçu, İ.B. (2021). Nesnelerin interneti (IoT) tabanlı kendini kürleyen akıllı beton üretimi. El-Cezerî Fen ve Mühendislik Dergisi, 8(1), 245-253. doi: https://doi.org/10.31202/ecjse.831009
  • Uygunoğlu, T., Topçu, İ.B., Çelik, A.G. (2014). Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability. Journal of Cleaner Production, 84, 691-700. doi: https://doi.org/10.1016/j.jclepro.2014.06.019
  • Vijay, K., Murmu, M., Deo, S.V. (2017). Bacteria based self healing concrete – A review, Construction and Building Materials, 152, 1008-1014. doi:https://doi.org/10.1016/j.conbuildmat.2017.07.040
  • Wan, L., Wendner, R., Cusatis, G. (2016). A novel material for insitu construction on Mars: experiments and numerical simulations. Construction and Building Materials, 120, 222–231. doi: https://doi.org/10.1016/j.conbuildmat.2016.05.046
  • Water Mass Map from Neutron Spectrometer, National Aeronautics and Space Administration, 2008.
  • Weilandt, A., Grohmann, M., Bollinger, K., Wagner, M. (2009). Rolex learning center in Lausanne: from conceptual design to execution, Symp. of the Int. Association for Shell and Spatial Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings, Italy.
  • Yalçınkaya, Ç., Beglarigale, A., Yazıcı, H., Yiğiter. H. (2013). Yüksek sıcaklığın SIFCON'un direncine etkisi, THBB Beton 2013 Hazır Beton Kongresi Bildirileri, İstanbul, Türkiye.
  • Yang, F., Yao, Y., Wang, X., Wei, J., Feng, Z. (2022). Preparation of recycled and multi-recycled coarse aggregates concrete with the vibration mixing process. Buildings, 12, 1369. doi:https://doi.org/10.3390/buildings12091369
  • Yu, Q. L., Spiesz, P., Brouwers, H. J. H. (2015). Ultra-lightweight concrete: Conceptual design and performance evaluation. Cement and Concrete Composites, 61, 18-28. doi:10.1016/j.cemconcomp.2015.04.012
  • Zhang, D.S., Zhang, S.X., Huang, B.W., Yang, Q.N., Li, J.B. (2022). Comparison of mechanical, chemical, and thermal activation methods on the utilisation of recycled concrete powder from construction and demolition waste, Jour. of Building Engineering, 61, 105295. doi: https://doi.org/10.1016/j.jobe.2022.105295

NEW DEVELOPMENTS IN CONCRETE TECHNOLOGY

Year 2023, Volume: 31 Issue: 4, 1028 - 1044, 22.12.2023
https://doi.org/10.31796/ogummf.1348428

Abstract

It is seen that the innovations that are developing day by day in concrete technology are being put into practice. In this article, some of the innovations that have recently been widely used in concrete technology have been explained. Some of the innovations are related to the materials used in concrete production, and some of them are related to the application of the developing digital technology to concrete. In practice, it would be useful to introduce them to those who are interested, as there are significant developments in the workability, strength and durability. In the article, under the title of new generation cement-based concretes, concretes produced with 3D printers, nano-technology ultra-high strength concretes, self-heating and cooling concretes, self-curing concretes, self-repairing concretes, waste aggregate concretes, mars concrete, ultra-lightweight concretes, self-cleaning concretes, bendable concrete, eco-concrete (green concrete), translucent and pervious concrete and concrete with internet of things (RIFID) technology, cement slurry impregnated fibrous concretes (SIFCON) have been explained based on the literature, and the advantages brought by these innovations have been tried to be introduced.

References

  • ACI (308-213) R-13 (2022). Report on Internally Cured Concrete using Pre-Wetted Absorptive Lightweight Aggregate. American Concrete Institute.
  • Alqahtani, F.K., Abotaleb, I.S., ElMenshawy, M. (2021). Life cycle cost analysis of lightweight green concrete utilizing recycled plastic aggregates. Journal of Building Engineering, 40, 102670. doi: https://doi.org/10.1016/j.jobe.2021.102670
  • Althoeya, F., Zaidb, O., Arbilic M.M., Martínez-Garcíad, R., Alhamamia, A., Shahe, H.A., Yosri, A.M. (2023). Physical, strength, durability and microstructural analysis of self-healing concrete: A systematic review. Case Studies in Construction Materials, 18, e01730.doi:https://doi.org/10.1016/j.cscm.2022.e01730
  • Anjuma, T., Dongre, P., Misbah, F., Nanyam, V.P.S.N. (2017). Purview of 3DP in the Indian Built Environment Sector. Procedia Engineering, 196, 228-35. doi: https://doi.org/10.1016/j.proeng.2017.07.194
  • Baduge, S.K., Navaratnam, S., Zidan, Y.A., McCormack, T., Nguyen, K., Mendis, P., Zhang, G., Aye, L. (2021). Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures, 29, 1597-609. doi: https://doi.org/10.1016/j.istruc.2020.12.061
  • Balaguru, P., Kendzulak, J. (1986). Flexural behavior of slurry infiltrated fiber concrete (SIFCON) made using condensed silica fume. International Concrete, 91, 1215-1230.
  • Bashandy, A.A., Meleka, N.N., Hamad, M.M. (2017). Comparative study on the using of PEG and PAM as curing agents for self-curing concrete. Challenge Journal of Concrete Research Letters, 8(1), 1-10. doi: https://doi.org/10.20528/cjcrl.2017.01.001
  • Bentz, D.P., Lura, P. Roberts, J.W. (2005). Mixture proportioning for internal curing. Reprinted from the Concrete International, 27(2), 35-40.
  • Bentz, D.P., Weiss, W.J. (2011). Internal curing: A 2010 state-of-the-art review, U.S. Department of Commerce, NISTIR 7765. doi: https://doi.org/10.6028/NIST.IR.7765
  • Bilek, V., Kersner, Z., Schmid, P., Mosler, T. (2002). The possibility of self-curing concrete. Proceedings of the International Conference of Innovations and Developments in Concrete Materials and Construction, 51-60.
  • Buswell, R., Soar, R., Gibb, A., Thorpe, A. (2007). Freeform construction: mega-scale rapid manufacturing for construction. Automation in Construction, 16(2), 224-231. doi: https://doi.org/10.1016/j.autcon.2006.05.002
  • Canbaz, M., Ünivar, C. (2015). Lif ve çimento türünün SIFCON özeliklerine etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 400-404.
  • Chahal, N., Siddique, R., Rajor, A. (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Construction and Building Materials, 28, 351–356. doi: https://doi.org/10.1016/j.conbuildmat.2011.07.042
  • Chand, M.S.R., Giri, P.S.N.R., Kumar, P.R., Kumar, G.R., Raveena, C. (2016). Effect of self-curing chemicals in self-compacting mortars. Construction and Building Materials, 107, 356-364. doi: https://doi.org/10.1016/j.conbuildmat.2016.01.018
  • Chinzorigt, G., Lim, M.K., Yu, M., Lee, H., Enkbold, O., Choi, D. (2020). Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate. Cement and Concrete Research, 136, 106062. doi: https://doi.org/10.1016/j.cemconres.2020.106062
  • Chu, S.H., Li, L.G., Kwan, A.K.H. (2021). Development of extrudable high strength fiber reinforced concrete incorporating nano calcium carbonate. Additive Manufacturing, 37, 101617. doi: https://doi.org/10.1016/j.addma.2020.101617
  • Duan, Z., Singh, A., Xiao, J., Hou, S. (2020). Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete. Construction and Building Materials, 254, 119323. doi: https://doi.org/10.1016/j.conbuildmat.2020.119323
  • Edvardsen, C. (1999). Water permeability and autogenous healing of cracks in concrete. ACI Material of Journal, 96, 448-454.
  • Elansary, A.A., Ashmawy, M.M., Abdalla, H.A. (2021). Effect of recycled coarse aggregate on physical and mechanical properties of concrete. Advances in Structural Engineering, 24(3), 583-595. doi:https://doi.org/10.1177/1369433220963792
  • El-Dieb, A.S. (2007). Self-curing concrete: Water retention, hydration and moisture transport. Construction and Building Materials, 21, 1282-1287. doi: https://doi.org/10.1016/j.conbuildmat.2006.02.007
  • El-Dieb, A.S., El-Maaddawy, T. A. (2020). Performance of self-curing concrete as affected by different curing regimes. Advances in Concrete Construction, 9(1), 33-41. doi: https://doi.org/10.12989/acc.2020.9.1.033
  • Elsener, B. (2005). Corrosion rate of steel in concrete-measurements beyond the Tafel law. Corrosion Science, 47, 3019-3033. doi: https://doi.org/10.1016/j.corsci.2005.06.021
  • Estarque, M. (2020). D´eficit habitacional e populaç˜ao de rua crescentes desafiam gest˜ao Bolsonaro. Erişim linki:https://www1.folha.uol.com.br/cotidiano/201 8/11/deficit-habitacional-e-populacao-de-rua-crescentes-desafiam-nova-gestao.
  • Fang, X.L., Xuan, D.X., Zhan, B.J., Li, W.F., Poon, C.S. (2021). A novel upcycling technique of recycled cement paste powder by a two-step carbonation process, Journal of Cleaner Production, 290, 125192. doi:https://doi.org/10.1016/j.jclepro.2020.125192
  • Feng, J., Su, Y., Qian, C. (2019). Couple defect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete, Construction and Building Materials, 228, 116-810. doi: https://doi.org/10.1016/j.conbuildmat.2019.116810
  • Florida, R., Schneider, B. (2018). The Global Housing Crisis. Erişim linki: https://www.citylab.com/ equity/2018/04/the-global-housingcrisis/ 557639/.
  • Ghale Noee, A., Nasiri Rajabli, J. (2023). The effect of nano-silica powder on mechanical and non-mechanical characteristics of self-consolidating concrete (SCC) and its impact on environment protection. Innov. Infrastruct. Solut., 8, 166. doi:https://doi.org/10.1007/s41062-023-01128-3
  • Ghiasvand, H., Bastami, M., Farokhzad, R. (2022). Enhancing the internal curing process of self-compacting concrete containing lightweight aggregate and chemical additives. European Journal of Environmental and Civil Engineering, 1-19. doi:https://doi.org/10.1080/19648189.2022.2026824
  • Gonzalez-Corominas, A., Etxeberria, M., Poon, C.S: (2016). Influence of steam curing on the pore structures and mechanical properties of fly-ash high performance concrete prepared with recycled aggregates. Cement and Concrete Composites, 71, 77-84. doi:https://doi.org/10.1016/j.cemconcomp.2016.05.010
  • Gopalakrishnan, R., Nithiyanantham, S. (2020). Effect of ZnO Nanoparticles on cement mortar for enhancing the physico-chemical, mechanical and related properties. Advanced Science, Engineering and Medicine, 12(3), 348-355. doi: https://doi.org/10.1166/asem.2020.2505
  • Gosselin, C., Duballet, R., Roux, P. (2016). Large-scale 3D printing of ultra-high performance concrete-a new processing route for architects and builders, Mater Des., 100, 102–109.
  • He, B., Gao, Y., Qu, L., Duan, K., Zhou, W., Pei, G. (2019). Characteristics analysis of self-luminescent cement-based composite materials with self-cleaning effect. Journal of Cleaner Production, 225, 1169-1183. https://doi.org/10.1016/j.jclepro.2019.03.291
  • Henk, M. Jonkers, A. (2010). Bacteria mediated remediation of concrete structures. 2nd International Symposium on Service Life Design for structures, e-ISBN: 978-2-35158-097-4 830-840.
  • Hocaoglu, İ. (2022). Investigation of the effect of current in zeolite-graphene oxide additives of mortar and development of a novel method for determining the setting time. Journal of Building Engineering, 46, 103803. doi:https://doi.org/10.1016/j.jobe.2021.103803
  • Hocaoğlu, I. (2021). Self-heating mortars with using graphene oxide and increasing CSH gel formation with the direct current application. Revista de la Construcción. Journal of Construction, 20(3), 559-575. doi: https://doi.org/10.7764/RDLC.20.3.559
  • Hocaoğlu, İ. (2023). Grafen oksit katkılı yeni nesil harçlarda dozaj ve doğru akım şiddetinin etkilerinin araştırılması, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 38 (1), 421-434. doi: ttps://doi.org/10.17341/gazimmfd.940271
  • https://malzemebilimi.net/cimentoicermeyenbukulebilir-beton-uretildi.html, 27 Temmuz 2023.
  • https://precast.org/2020/08/selfcleaningconcrete/#:~:text=Titanium%20dioxide%20activates%20in%20the,pollutants%20on%20the%20concrete%20surface
  • https://theconstructor.org/concrete/flexiblebendable-concrete-composition-application/36008/ 28 Temmuz 2023.
  • https://www.ekoyapidergisi.org/alternatif-malzemeler-yari-saydam-beton-transparan-beton, 9 Şubat 2022.
  • https://www.ftmmachinery.com/blog/how-to-make recycled-concrete-aggregate-and-what-is-it-usedfor.html, 1 Ağustos, 2023.
  • https://www.specifyconcrete.org/blog/eco-friendly-alternatives-to-traditional-concrete, 28 Temmuz 2023.
  • https://www.techinside.com/bukulebilir-beton gelistirdi/
  • https://www.zekiyildirim.com.tr/ebis-elektronik-beton-izleme-sistemi-nedir-cipli-beton-nedir, 28 Temmuz 2023.
  • Jieting, X., Xiao, Q., Zhenying, H., Yongkang, L., Ben, L., Zhengzhuan, X. (2022). Effect of superabsorbent polymer (SAP) internal curing agent on carbonation resistance and hydration performance of cement concrete. Advances in Materials Science and Engineering, 3485373, 1-13. doi:https://doi.org/10.1155/2022/3485373
  • Johann, S., Strangfeld, C., Müller, M., Mieller, B., Bartholmai, M. (2017). RFID sensor systems embedded in concrete– requirements for long–term operation. Materials Today: Proceedings, 4, 5827–5832. doi: https://doi.org/10.1016/j.matpr.2017.06.053
  • Juergen, H. (2007). A new system for translucent concrete-Application Potentials. Proceedings, 51, 28-29.
  • Kamal, M.M., Safan, M.A., Bashandy, A.A., Khalil, A.M. (2018). Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete. Journal of Building Engineering, 16, 79-93. doi:https://doi.org/10.1016/j.jobe.2017.12.012
  • Kauppila, I. (2022). 3D concrete printing – The ultimate guide, updated Feb 16, 2022, Erişim adresi: https://all3dp.com/1/3d-concrete-printing-guide
  • Kazemian, F., Rooholamini, H., Hassani, A. (2019). Mechanical and fracture properties of concrete containing treated and untreated recycled concrete aggregates. Construction and Building Materials, 209, 690-700. doi: https://doi.org/10.1016/j.conbuildmat.2019.03.179
  • Kazmi, S.M.S., Munir, M.J., Wu, Y.F., Patnaikuni, I., Zhou, Y.W., Xing, F. (2020). Effect of recycled aggregate treatment techniques on the durability of concrete: A comparative evaluation. Construction and Building Materials, 264, 120284. doi: https://doi.org/10.1016/j.conbuildmat.2020.120284
  • Le, T.T., Austin, S.A., Lim, S., Buswell, R.A. Gibb, A.G.F., Thorpe, T. (2012). Hardened properties of high performance printing concrete, Cement and Concrete Research, 42(3), 558-566.
  • Lee, Y.S., Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied Microbiology and Biotechnology, 102, 3059–3070. doi:https://doi.org/10.1007/s00253-018-8830-y
  • Li, V.C., Herbert, E. (2012). Robust self-healing concrete for sustainable infrastructure. Journal of Advanced Concrete Technology, 10(6), 207-218. doi: https://doi.org/10.3151/jact.10.207
  • Li, X., Korayem, A.H., Li, C., Liu, Y., He, H., Sanjayan, J.G., Duan, W.H. (2016). Incorporation of graphene oxide and silica fume into cement paste: a study of dispersion and compressive strength, Construction and Building Materials, 123, 327-335. doi: https://doi.org/10.1016/j.conbuildmat.2016.07.022
  • Likes, L., Markandeya, A., Haider, M.M., Bollinger, D., McCloy, J.S.., Nassiri, S. (2022). Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. Journal of Cleaner Production, 364, 132651. doi: https://doi.org/10.1016/j.jclepro.2022.132651
  • Lim, S., Buswell, R.A., Le, T.T. (2012). Developments in construction-scale additive manufacturing processes. Autom Constr., 21, 262-268.
  • Lokeshwari, M., Pavan, B.R., Bandakli, S.R., Tarun, P., Sachin, Kumar, V. (2021). A review on self-curing concrete. Materials today: Proceedings, 43(2), 2259-2264.doi:https://doi.org/10.1016/j.matpr.2020.12.859
  • Losonczi, A. (2010). Translucent building block and a method for manufacturing The same. US Patent Application Publication, America.
  • Martinez-Garcia, R., Rojas, M.I.S., Jagadesh, P., Lopez-Gayarre, F., Moran-del-Pozo, J.M., Juan-Valdes, A. (2022). Effect of pores on the mechanical and durability properties on high strength recycled fine aggregate mortar. Case Studies in Construction Materials, 16, e01050. doi:https://doi.org/10.1016/j.cscm.2022.e01050
  • Mazari, M., Aval, S.F., Rodriguez-Nikl, T. (2020). Evaluating the use of recycled and sustainable materials in self-consolidating concrete for underground infrastructure applications. University Transportation Center for Underground Transportation Infrastructure. California State University. Erişim adresi: https://rosap.ntl.bts.gov/view/dot/59164
  • Mechtcherine, V., Bos, F.P., Perrot, A., Leal da Silva, W.R., Nerella, V.N., Fataei, S., Wolfs, R:,J.M., Sonebi, M., Roussel, N. (2020). Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research, 132, 106037. doi: https://doi.org/10.1016/j.cemconres.2020.106037
  • Mechtcherine, V., Nerella, V., Will, F., Näther, M., Otto, J., Krause, M. (2019). Large-scale digital concrete construction -CONPrint3D concept for on-site, monolithic 3Dprinting. Automation in Construction, 107, 102933. doi: https://doi.org/10.1016/j.autcon.2019.102933
  • Mehta, P.K. (1999). Advancements in concrete technology, Point of View: Reflections About Technology Choices, 69-76.
  • Memon, S.A., Bekzhanova, Z., Murzakarimova, A. (2022). A Review of improvement of interfacial transition zone and adherent mortar in recycled concrete aggregate, Buildings, 12(10), 1600. doi:https://doi.org/10.3390/buildings12101600
  • Mousavi, M. A., Sadeghi-Nik, A., Bahari, A., Ashour, A., Khayat, K.H. (2022). Cement paste modified by nano-montmorillonite and carbon nanotubes. ACI Materials Journal, 119, 173-185. doi:https://doi.org/10.14359/51734612
  • Mousavi, M.A., Sadeghi-Nik, A., Bahari, A., Jin, C., Ahmed, R., Ozbakkaloglu, T., Brito, J. (2021). Strength optimization of cementitious composites reinforced by carbon nanotubes and titania nanoparticles. Construction and Building Materials, 303, 124510. doi:https://doi.org/10.1016/j.conbuildmat.2021.124510
  • Nachiar, S., Sekar, A., Sarjune, N.A., Kumaresan, M. (2023). Effect of steel fiber in SIFCON using GGBS as binder replacement, Materials Today: Proceedings, 93, 1-8. https://doi.org/10.1016/j.matpr.2023.07.281
  • Nano-particles. (2023). Erişim adresi: https://nanografi.com/popular-products/
  • Neeladharan, C., Anbarasan, M., Sathish, P. (2018) Experimental investigation on bendable concrete by using admixtures. Suraj Punj Journal for Multidisciplinary Research, 8, 11, 69-78.
  • Nielsen, C.V., Glavind, M. (2007). Danish experiences with a decade of green concrete. Journal of Advanced Concrete Technology, 5(1), 3-12.
  • Nik, A.S., Bahari, A. (2011). Nano-particles in concrete and cement mixtures. Applied Mechanics and Materials, (110-116), 3853–3855. doi:https://doi.org/10.4028/www.scientific.net/AMM.110-116.3853
  • Ohemeng, E.A., Ekolu, S.O. (2020). Comparative analysis on costs and benefits of producing natural and recycled concrete aggregates: A South African case study. Case Studies in Construction Materials, 13, e00450.doi:https://doi.org/10.1016/j.cscm.2020.e00450
  • Pacheco, J., Brito, J., Chastre, C., Evangelista, L. (2019). Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates. Construction and Building Materials, 201, 110-120. doi:https://doi.org/10.1016/j.conbuildmat.2018.12.200
  • Pacheco-Torgal, F.P., Labrincha, J.A. (2012). The future of construction materials research and the seventh un millennium development goal: A few insights. Construction and Building Materials, 40, 729-737. doi: https://doi.org/10.1016/j.conbuildmat.2012.11.007
  • Pangdaeng, S., Phoo-Ngernkham, T., Sata, V., Chindaprasirt, P. (2014). Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Materials and Design, 53, 269-274. doi:https://doi.org/10.1016/j.matdes.2013.07.018
  • Patil, H.S., Raijiwala, D.B., Prashant, H., Vijay, B. (2008). Bacterial concrete-a self-healing concrete. International Journal of Applied Engineering Research, 3(12), 1719.
  • Qin, L., Gao, X.J. (2019). Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation. Waste Management, 89, 254-264. doi: https://doi.org/10.1016/j.wasman.2019.04.018
  • Reches, Y. (2019). Concrete on Mars: Options, challenges, and solutions for binder-based construction on the Red Planet. Cement and Concrete Composites, 104, 103349. doi:https://doi.org/10.1016/j.cemconcomp.2019.103349
  • Resmi Gazete, 4708 sayılı yapı denetimi hakkında kanun kapsamında denetimi yürütülen yapılara ait taze betondan numune alınması, deneylerinin yapılması, raporlanması süreçlerinin izlenmesi ve denetlenmesine dair tebliğ, Sayı 30629, Aralık 18, 2018.
  • Sağlam, R. N., Ulaş, M. A., Alyamaç, K.E. (2022). Hafif beton üretimi için gerekli olan hafif agrega miktarının yapay sinir ağı ile tahmin edilmesi. Fırat Üniv. Mühendislik Bilimleri Dergisi, 34(2), 889-898. doi: https://doi.org/10.35234/fumbd.1133877
  • Samani, A.K., Attart, M.M. (2014). Lateral strain model for concrete under compression. ACI Structural Journal, 44.-453. doi: https://doi.org/10.14359.51686532
  • Sanchez, F., Sobolev, K. (2010). Nanotechnology in Concrete-A Review. Construction and Building Materials, 24, 2060-2071. doi:https://doi.org/10.1016/j.conbuildmat.2010.03.014
  • Sasanipour, H., Aslani, F. (2020). Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates. Construction and Building Materials, 236, 117540. doi: https://doi.org/10.1016/j.conbuildmat.2019.117540
  • Schutter, G.D., Lesage, K., Mechtcherine, V, Nerella, V.N., Habert, G., Agusti-Juan, I. (2018). Vision of 3D printing with concrete-technical, economic and environmental potentials. Cement and Concrete Research,112, 25–36. doi: https://doi.org/10.1016/j.cemconres.2018.06.001
  • Seifan, M., Mendoza, S., Berenjian, A. (2022). Effect of nano and micro iron oxide particles on the workability, strength and absorption rate of cement mortar containing fly ash. European Journal of Environmental and Civil Engineering, 26, 3898- 3912. https://doi.org/10.1080/19648189.2020.1824822
  • Servatmand, A., Şimşek O. (2018). Yüksek performanslı harç üretiminde optimum nano malzeme oranlarının belirlenmesi, Politeknik Dergisi, 21(2), 327-332.
  • Shah, C.R., Jadhav, R.A., Patil, S.S., Agrawal, A.C., Patil, S.N., Sawant, K.P. (2017). Rainwater harvesting and reducing water logging problem by using permeable concrete, International Journal of Modern Trends in Engineering and Research, 4, 150-154.
  • Shanghai opens world’s longest 3D-printed concrete bridge, 2019, Erişim adresi: https:// edition.cnn.com/style/article/shanghai-3d-printed-bridge-scli-intl/index.html
  • Shen, W., Zhang, C., Li, Q., Zhang, W., Cao, L., Ye, J. (2015). Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete. Journal of Cleaner Production, 87, 762-765. doi:https://doi.org/10.1016/j.jclepro.2014.10.014
  • Song, H.W., Saraswathy, V. (2007). Corrosion monitoring of reinforced concrete structures – a review. Intern. Journal of Electrochemical Science, 2: 1-28.
  • Spiesz, P.R., Hunger, M. (2017). Structural ultra-lightweight concrete – from laboratory research to field trials. H. Justnes, & H. Braarud (Eds.), Proceedings of the 11th High Performance Concrete conference, HPC Tromso, 1-10.
  • Spiesz, P.R., Hunger, M. (2017). Structural ultra-lightweight concrete – from laboratory research to field trials. In H. Justnes, & H. Braarud (Eds.), Proceedings of the 11th High Performance Concrete conference, HPC Tromso 2017, 1-10.
  • Suhendro, B. (2014). Toward green concrete for better sustainable environment, Procedia Engineering, 95, 2014, 305-320. doi:https://doi.org/10.1016/j.proeng.2014.12.190
  • Sun, C., Chen, L.L., Xiao, J.Z., Singh, A., Zeng, J.H. (2021). Compound utilization of construction and industrial waste as cementitious recycled powder in mortar, Resources, Conservation and Recycling, 170, 105561. doi:https://doi.org/10.1016/j.resconrec.2021.105561
  • Tang, Q., Ma, Z.M., Wu, H.X., Wang, W. (2020). The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical review. Cement and Concrete Composites, 114, 103807. doi: https://doi.org/10.1016/j.cemconcomp.2020.103807
  • Topçu, İ.B. (1997). Physical and mechanical properties of concretes produced with waste concrete. Cement and Concrete Research, 27(12), 1817-1823. doi:https://doi.org/10.1016/S00088846(97)00190-7
  • Topçu, İ.B. (1998). Hafif Beton Özeliklerinin Kompozit Malzeme Olarak İncelenmesi, Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü, Mart 1988, İstanbul.
  • Topçu, İ.B., Akkan, E., Uygunoğlu, T. (2020). Self-Cleaning Concretes: An Overview. Cement Based Composites, 2, 6-11. doi: https://doi.org/10.36937/cebacom.2020.002.002
  • Topçu, I.B., Günçan, N.F. (1995). Using waste concrete as aggregates. Cement and Concrete Research, 25(7), 1385-1390. doi:https://doi.org/10.1016/0008-8846(95)00131-U
  • Topçu, İ.B., Hocaoğlu, İ., Kara, İ. (2023). Ultra Hafif Betonda Güncel Gelişmeler. International Journal of Engineering Research and Development, 15 (2), 689-703. doi: https://doi.org/10.29137/umagd.1286178
  • Topçu, İ.B., Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete, Journal of Materials Processing Technology, 204(1-3), 34-38. doi: https://doi.org/10.1016/j.jmatprotec.2007.10.052
  • Topçu, İ.B., Şengel, S. (2004). Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research, 34(8), 1307-1312. doi:https://doi.org/10.1016/j.cemconres.2003.12.019
  • Topçu, İ.B., Uygunoğlu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108-4116. doi:https://doi.org/10.1016/j.buildenv.2006.11.024
  • Topçu, İ.B., Uygunoğlu, T. (2016). Saydam Betonların Özellikleri Üzerine Bir İnceleme, Teknik Dergi, 7469-7475.
  • Türkiye Bina Deprem Yönetmeliği, (2018). 18 Mart 2018 tarihli ve 30364 sayılı mükerrer Resmi Gazete, Afet ve Acil Yönetimi Başkanlığı, Ankara.
  • Ünal, S., Canbaz, M. (2022). Effect of industrial wastes on self-cleaning properties of concrete containing anatase-TiO2. Revista de la Construcción. Journal of Construction, 21(2), 493-505. https://doi.org/10.7764/RDLC.21.3.493
  • Uygunoğlu T., Kılçık F.M., Topçu İ.B. (2021). Nesnelerin internetinin (IoT) inşaat mühendisliğindeki rolü: gömülü sensör kullanım. International Journal of 3D Printing Technologies and Digital Industry, 5(3), 390-399. doi:https://doi.org/10.46519/ij3dptdi.948567
  • Uygunoğlu, T., Topçu, İ.B. (2020). The role of internet of things (IoT) in civil engineering: RFID Applications. International Journal of 3D Printing Technologies Digital Industry, 4(3), 270-277. Erişim Linki: https://dergipark.org.tr/en/pub/ij3dptdi/archive
  • Uygunoğlu, T., Topçu, İ.B. (2021). Nesnelerin interneti (IoT) tabanlı kendini kürleyen akıllı beton üretimi. El-Cezerî Fen ve Mühendislik Dergisi, 8(1), 245-253. doi: https://doi.org/10.31202/ecjse.831009
  • Uygunoğlu, T., Topçu, İ.B., Çelik, A.G. (2014). Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability. Journal of Cleaner Production, 84, 691-700. doi: https://doi.org/10.1016/j.jclepro.2014.06.019
  • Vijay, K., Murmu, M., Deo, S.V. (2017). Bacteria based self healing concrete – A review, Construction and Building Materials, 152, 1008-1014. doi:https://doi.org/10.1016/j.conbuildmat.2017.07.040
  • Wan, L., Wendner, R., Cusatis, G. (2016). A novel material for insitu construction on Mars: experiments and numerical simulations. Construction and Building Materials, 120, 222–231. doi: https://doi.org/10.1016/j.conbuildmat.2016.05.046
  • Water Mass Map from Neutron Spectrometer, National Aeronautics and Space Administration, 2008.
  • Weilandt, A., Grohmann, M., Bollinger, K., Wagner, M. (2009). Rolex learning center in Lausanne: from conceptual design to execution, Symp. of the Int. Association for Shell and Spatial Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings, Italy.
  • Yalçınkaya, Ç., Beglarigale, A., Yazıcı, H., Yiğiter. H. (2013). Yüksek sıcaklığın SIFCON'un direncine etkisi, THBB Beton 2013 Hazır Beton Kongresi Bildirileri, İstanbul, Türkiye.
  • Yang, F., Yao, Y., Wang, X., Wei, J., Feng, Z. (2022). Preparation of recycled and multi-recycled coarse aggregates concrete with the vibration mixing process. Buildings, 12, 1369. doi:https://doi.org/10.3390/buildings12091369
  • Yu, Q. L., Spiesz, P., Brouwers, H. J. H. (2015). Ultra-lightweight concrete: Conceptual design and performance evaluation. Cement and Concrete Composites, 61, 18-28. doi:10.1016/j.cemconcomp.2015.04.012
  • Zhang, D.S., Zhang, S.X., Huang, B.W., Yang, Q.N., Li, J.B. (2022). Comparison of mechanical, chemical, and thermal activation methods on the utilisation of recycled concrete powder from construction and demolition waste, Jour. of Building Engineering, 61, 105295. doi: https://doi.org/10.1016/j.jobe.2022.105295
There are 119 citations in total.

Details

Primary Language Turkish
Subjects Construction Materials
Journal Section Review Articles
Authors

İlker Bekir Topçu 0000-0002-2075-6361

İsmail Hocaoğlu 0000-0001-9294-1120

Early Pub Date December 22, 2023
Publication Date December 22, 2023
Acceptance Date December 7, 2023
Published in Issue Year 2023 Volume: 31 Issue: 4

Cite

APA Topçu, İ. B., & Hocaoğlu, İ. (2023). BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(4), 1028-1044. https://doi.org/10.31796/ogummf.1348428
AMA Topçu İB, Hocaoğlu İ. BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER. ESOGÜ Müh Mim Fak Derg. December 2023;31(4):1028-1044. doi:10.31796/ogummf.1348428
Chicago Topçu, İlker Bekir, and İsmail Hocaoğlu. “BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 4 (December 2023): 1028-44. https://doi.org/10.31796/ogummf.1348428.
EndNote Topçu İB, Hocaoğlu İ (December 1, 2023) BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 4 1028–1044.
IEEE İ. B. Topçu and İ. Hocaoğlu, “BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 4, pp. 1028–1044, 2023, doi: 10.31796/ogummf.1348428.
ISNAD Topçu, İlker Bekir - Hocaoğlu, İsmail. “BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/4 (December 2023), 1028-1044. https://doi.org/10.31796/ogummf.1348428.
JAMA Topçu İB, Hocaoğlu İ. BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER. ESOGÜ Müh Mim Fak Derg. 2023;31:1028–1044.
MLA Topçu, İlker Bekir and İsmail Hocaoğlu. “BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 4, 2023, pp. 1028-44, doi:10.31796/ogummf.1348428.
Vancouver Topçu İB, Hocaoğlu İ. BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER. ESOGÜ Müh Mim Fak Derg. 2023;31(4):1028-44.

20873  13565  13566 15461  13568    14913