Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 1 - 13, 29.11.2020

Abstract

References

  • Adams, A. E., Miller, B. G., Saul, M., & Pegg, J. (2014). Supporting elementary pre- service teachers to teach STEM through place-based teaching and learning experiences. Electronic Journal of Science Education, 18(5), 1–22.
  • Anderson, R. (2007). Being a mathematics learner: Four faces of identity. The Mathematics Educator, 17(1), 7–14.
  • Aslan-Tutak, F., Akaygün, S. & Tezsezen, S. (2017). İşbirlikli FeTeMM (fen, teknoloji, mühendislik, matematik) eğitimi uygulaması: Kimya ve matematik öğretmen adaylarının FeTeMM farkındalıklarının i̇ncelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 32(4), 794–816. doi: 10.16986/HUJE.2017027115
  • Beauchamp, C., & Thomas, L. (2009). Understanding teacher identity: An overview of issues in the literature and implications for teacher education. Cambridge Journal of Education, 39(2), 175–189. doi:10.1080/03057640902902252
  • Bikner-Ahsbahs, A. (2003). A social extension of a psychological interest theory. International Group for the Psychology of Mathematics Education, 2, 97–104.
  • Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246–263. doi:10.1111/j.1467-8624.2007.00995.x
  • Bleeker, M. M., & Jacobs, J. E. (2004). Achievement in math and science: Do mothers’ beliefs matter 12 years later? Journal of Educational Psychology, 96(1), 97–109. https://doi.org/10.1037/0022‐0663.96.1.97.
  • Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematics worlds. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 171–200). Westport, CT: Ablex.
  • Brislin, R. W. (1970) Back-translation for cross-cultural research. Journal of Cross-cultural Psychology, 1(3), pp. 185–216.
  • Brislin, Richard (1993). Understanding culture's influence on behavior. Orlando, FL: Harcourt Brace Jovanovich.
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York: The Guilford Press.
  • Chong, S., & Low, E. L. (2009). Why I want to teach and how I feel about teaching—Formation of teacher identity from pre-service to the beginning teacher phase. Educational Research for Policy and Practice, 8(1), 59–72. doi:10.1007/s10671-008-9056-z
  • Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. London: Routledge.
  • Conderman, G., & Woods, S. (2008). Science instruction: An endangered species: In light of America’s recent scientific decline, teaching elementary science should be an imperative. Kappa Delta Pi Record, 44(2), 76–80. doi:10.1080/00228958.2008.10516499
  • Cribbs, J. D., Hazari, Z., Sonnert, G., & Sadler, P. M. (2015). Establishing an explanatory model for mathematics identity. Child Development, 86(4), 1048–1062. https://doi.org/10.1111/cdev.12363.
  • DeJarnette, N. K. (2012). America's children: Providing early exposure to STEM (science, technology, engineering and math) initiatives. Education, 133(1), 77–84.
  • Derin, G., Aydın, E. & Kırkıç, K.A. (2017). STEM (fen-teknoloji-mühendislik-matematik) eğitimi tutum ölçeği. El-Cezeri Fen ve Mühendislik Dergisi, 4(3), 547–559.
  • Dou, R., Hazari, Z., Dabney, K., Sonnert, G., & Sadler P. (2019). Early informal STEM experiences and STEM identity: The importance of talking science. Science Education. 103, 623–637. https://doi.org/10.1002/sce.21499
  • Feldhaus, C.A. (2014). How pre service elementary school teachers’ mathematical dispositions are influenced by school mathematics. American International Journal of Contemporary Research, 4(6), 91–97. Retrieved from http://www.aijcrnet.com/journals/Vol_4_No_6_June_2014/11.pdf
  • Field, A. (2005). Discovering statistics using SPSS. Thousand Oaks, CA: Sage Publications, Inc.
  • Gelen, B., Akçay, B., Tiryaki, A., & Benek, İ. (2019). Fen bilimleri öğretmen adaylarının Fen-Teknoloji-Mühendislik-Matematik (FeTeMM)’e Yönelik Özyeterlik Ölçeği: Türkçe’ye uyarlama, geçerlik ve güvenirlik çalışması. Eğitimde Kuram ve Uygulama, 15(1), 88–107. doi: 10.17244/eku.395204
  • Griffin, L. (2015). How Do How Do We Improve Elementary Math Education? It Starts in High School. AdvancED, Spring, 2015. Retrieved from https://www.advanc-ed.org/source/how-do-we-improve-elementary-math-education-it-starts-high-school
  • Hacıömeroğlu, G. & Bulut, A.S. (2016). Öğretmen Adaylarının Entegre FeTeMM Öğretimi Yönelim Ölçeği Türkçe Formunun Geçerlik ve Güvenirlik Çalışması. Eğitimde Kuram ve Uygulama, 12(2), 654–669.
  • Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M. C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), 978–1003. https://doi.org/10.1002/tea.20363.
  • Heffernan, K.A. & Newton, K.J. (2019) Exploring mathematics identity: an intervention of early childhood preservice teachers, Journal of Early Childhood Teacher Education, 40(3), 296–324. doi: 10.1080/10901027.2019.1590484
  • Hooper, D., Coughlan, J. ve Mullen, M. R. (2008). Structural Equation Modelling: Guidelines for Determining Model Fit. The Electronic Journal of Business Research Methods, 6, 53–60.
  • Horn, I. S., Nolen, S. B., Ward, C., & Campbell, S. S. (2008). Developing practices in multiple worlds: The role of identity in learning to teach. Teacher Education Quarterly, 35(3), 61–72.
  • Hu, L. T., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.
  • Jöreskog, K. G. & Sörbom, D. (2002). LISREL 8: user’s reference guide (Chicago, IL, Scientific Software International).
  • Karasar, N. (2010). Bilimsel araştırma yöntemleri. Ankara: Nobel Yayın-Dağıtım.
  • Klein, P. (1986). A handbook of test construction. London: Routledge.
  • Kline, R. B. (2016). Principles and practice of structural equation modeling. The Guilford Press, New York: NY.
  • Li, Y. (2008). Mathematical preparation of elementary school teachers: Generalists versus content specialists. School Science and Mathematics, 108(5), 169–172.
  • Matsumoto, D. & Yoo, S. H. (2006) Toward a new generation of cross-cultural research. Perspectives on Psychological Science, 1(3), 234–250. doi:10.1111/j.1745-6916.2006.00014.x
  • Özkızılcık, M. & Cebesoy, Ü.B. (2020). Tasarım temelli̇ FeTeMM etki̇nli̇kleri̇ni̇n fen bi̇lgi̇si̇ öğretmen adaylarının problem çözme beceri̇leri̇ne ve fetemm öğreti̇mi̇ yöneli̇mleri̇ne etki̇si̇ni̇n i̇ncelenmesi̇. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 33(1), 177–203. doi: 10.19171/uefad.588222
  • Schumacker, R. E. ve Lomax, R. G. (1996). A beginner's guide to structural equation modeling. Lawrence Erlbaum Associates, Inc.
  • Schwartz, R. S., & Gess-Newsome, J. (2008). Elementary science specialists: A pilot study of current models and a call for participation in the research. Science Educator, 17(2), 19–30.
  • Smith, F. M., & Hausafus, C. O. (1998). Relationship of family support and ethnic minority students’ achievement in science and mathematics. Science Education, 82(1), 111–125.
  • Suna, H. E., Tanberkan, H., Gür, B. S., Perc, M., & Ozer, M. (2020). Socioeconomic status and school type as predictors of academic achievement. Journal of Economy Culture and Society, 61, 41–64. doi:10.26650/ JECS2020-0034
  • Sümer, N. (2000). Yapısal eşitlik modelleri: temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3(6), 49–74.
  • Pajares, F., & Schunk, D. H. (2001). Self-beliefs and school success: Self-efficacy, self-concept, and school achievement. In R. J. Riding & S. G. Rayner (Eds.), Self perception (pp. 239–265). Westport, CT: Ablex.
  • Pell, T., & Jarvis, T. (2001). Developing attitude to science scales for use with children of ages from five to eleven years. International Journal of Science Education, 23(8), 847–862. doi:10.1080/09500690010016111
  • Tabachnick, B. G. ve Fidell, L. S. (2007). Using multivariate statistics. New York: Allyn and Bacon/Pearson Education.
  • Tarkın-Çelikıran, A. & Aydın-Günbatar, S. (2017). Kimya öğretmen adaylarının FeTeMM uygulamaları hakkındaki görüşleri. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 1624–1656.
  • Weiss, I. R., Banilower, E. R., McMahon, K. C., & Smith, P. S. (2001). 2000 National survey of science and mathematics education. Chapel Hill, NC: Horizon Research, Inc.
  • Yaman, C. Özdemir, A. & Vural, R. A. (2018). STEM uygulamaları öğretmen öz-yeterlik ölçeğinin geliştirilmesi: Bir geçerlik ve güvenirlik çalışması. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 93–104.
  • Yıldırım, B. & Altun, Y. (2015). STEM eğitim ve mühendislik uygulamalarının fen bilgisi laboratuvar dersindeki etkilerinin incelenmesi. El-Jezeri Journal of Science and Engineering, 2(2), 28–40.
  • Yıldırım, B. & Topalcengiz, E.Ş. (2019). STEM pedagogical content knowledge scale (STEMPCK): A validity and reliability study. Journal of STEM Teacher Education, 53(2), Article 2. Retrieved from https://ir.library.illinoisstate.edu/jste/vol53/iss2/2

The Reliability and Validity Study of the STEM Identity Instrument

Year 2020, Volume: 7 Issue: 2, 1 - 13, 29.11.2020

Abstract

he purpose of this study was to establish cross-cultural reliability and validity of the STEM identity instrument for pre-service teachers in Turkey. The translated instrument was administered to 211 elementary pre-service teachers at a public university in Turkey. For the adaptation of the instrument, both exploratory factor analysis and confirmatory factor analysis furnished evidence to support the reliability and factorial validity of the Turkish version of the STEM identity instrument. Findings revealed that adapted instrument consists of two sub-scales: STEM interest and STEM recognition. Cronbach’s alpha for the whole instrument calculated as .88. For the sub-scales STEM interest and STEM recognition, the reliability value was found as .83 and .87, respectively. The original and adapted instrument were equivalent. The results of the study revealed that adapted instrument is valid and reliable to use for pre-service teachers.

References

  • Adams, A. E., Miller, B. G., Saul, M., & Pegg, J. (2014). Supporting elementary pre- service teachers to teach STEM through place-based teaching and learning experiences. Electronic Journal of Science Education, 18(5), 1–22.
  • Anderson, R. (2007). Being a mathematics learner: Four faces of identity. The Mathematics Educator, 17(1), 7–14.
  • Aslan-Tutak, F., Akaygün, S. & Tezsezen, S. (2017). İşbirlikli FeTeMM (fen, teknoloji, mühendislik, matematik) eğitimi uygulaması: Kimya ve matematik öğretmen adaylarının FeTeMM farkındalıklarının i̇ncelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 32(4), 794–816. doi: 10.16986/HUJE.2017027115
  • Beauchamp, C., & Thomas, L. (2009). Understanding teacher identity: An overview of issues in the literature and implications for teacher education. Cambridge Journal of Education, 39(2), 175–189. doi:10.1080/03057640902902252
  • Bikner-Ahsbahs, A. (2003). A social extension of a psychological interest theory. International Group for the Psychology of Mathematics Education, 2, 97–104.
  • Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246–263. doi:10.1111/j.1467-8624.2007.00995.x
  • Bleeker, M. M., & Jacobs, J. E. (2004). Achievement in math and science: Do mothers’ beliefs matter 12 years later? Journal of Educational Psychology, 96(1), 97–109. https://doi.org/10.1037/0022‐0663.96.1.97.
  • Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematics worlds. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 171–200). Westport, CT: Ablex.
  • Brislin, R. W. (1970) Back-translation for cross-cultural research. Journal of Cross-cultural Psychology, 1(3), pp. 185–216.
  • Brislin, Richard (1993). Understanding culture's influence on behavior. Orlando, FL: Harcourt Brace Jovanovich.
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York: The Guilford Press.
  • Chong, S., & Low, E. L. (2009). Why I want to teach and how I feel about teaching—Formation of teacher identity from pre-service to the beginning teacher phase. Educational Research for Policy and Practice, 8(1), 59–72. doi:10.1007/s10671-008-9056-z
  • Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. London: Routledge.
  • Conderman, G., & Woods, S. (2008). Science instruction: An endangered species: In light of America’s recent scientific decline, teaching elementary science should be an imperative. Kappa Delta Pi Record, 44(2), 76–80. doi:10.1080/00228958.2008.10516499
  • Cribbs, J. D., Hazari, Z., Sonnert, G., & Sadler, P. M. (2015). Establishing an explanatory model for mathematics identity. Child Development, 86(4), 1048–1062. https://doi.org/10.1111/cdev.12363.
  • DeJarnette, N. K. (2012). America's children: Providing early exposure to STEM (science, technology, engineering and math) initiatives. Education, 133(1), 77–84.
  • Derin, G., Aydın, E. & Kırkıç, K.A. (2017). STEM (fen-teknoloji-mühendislik-matematik) eğitimi tutum ölçeği. El-Cezeri Fen ve Mühendislik Dergisi, 4(3), 547–559.
  • Dou, R., Hazari, Z., Dabney, K., Sonnert, G., & Sadler P. (2019). Early informal STEM experiences and STEM identity: The importance of talking science. Science Education. 103, 623–637. https://doi.org/10.1002/sce.21499
  • Feldhaus, C.A. (2014). How pre service elementary school teachers’ mathematical dispositions are influenced by school mathematics. American International Journal of Contemporary Research, 4(6), 91–97. Retrieved from http://www.aijcrnet.com/journals/Vol_4_No_6_June_2014/11.pdf
  • Field, A. (2005). Discovering statistics using SPSS. Thousand Oaks, CA: Sage Publications, Inc.
  • Gelen, B., Akçay, B., Tiryaki, A., & Benek, İ. (2019). Fen bilimleri öğretmen adaylarının Fen-Teknoloji-Mühendislik-Matematik (FeTeMM)’e Yönelik Özyeterlik Ölçeği: Türkçe’ye uyarlama, geçerlik ve güvenirlik çalışması. Eğitimde Kuram ve Uygulama, 15(1), 88–107. doi: 10.17244/eku.395204
  • Griffin, L. (2015). How Do How Do We Improve Elementary Math Education? It Starts in High School. AdvancED, Spring, 2015. Retrieved from https://www.advanc-ed.org/source/how-do-we-improve-elementary-math-education-it-starts-high-school
  • Hacıömeroğlu, G. & Bulut, A.S. (2016). Öğretmen Adaylarının Entegre FeTeMM Öğretimi Yönelim Ölçeği Türkçe Formunun Geçerlik ve Güvenirlik Çalışması. Eğitimde Kuram ve Uygulama, 12(2), 654–669.
  • Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M. C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), 978–1003. https://doi.org/10.1002/tea.20363.
  • Heffernan, K.A. & Newton, K.J. (2019) Exploring mathematics identity: an intervention of early childhood preservice teachers, Journal of Early Childhood Teacher Education, 40(3), 296–324. doi: 10.1080/10901027.2019.1590484
  • Hooper, D., Coughlan, J. ve Mullen, M. R. (2008). Structural Equation Modelling: Guidelines for Determining Model Fit. The Electronic Journal of Business Research Methods, 6, 53–60.
  • Horn, I. S., Nolen, S. B., Ward, C., & Campbell, S. S. (2008). Developing practices in multiple worlds: The role of identity in learning to teach. Teacher Education Quarterly, 35(3), 61–72.
  • Hu, L. T., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.
  • Jöreskog, K. G. & Sörbom, D. (2002). LISREL 8: user’s reference guide (Chicago, IL, Scientific Software International).
  • Karasar, N. (2010). Bilimsel araştırma yöntemleri. Ankara: Nobel Yayın-Dağıtım.
  • Klein, P. (1986). A handbook of test construction. London: Routledge.
  • Kline, R. B. (2016). Principles and practice of structural equation modeling. The Guilford Press, New York: NY.
  • Li, Y. (2008). Mathematical preparation of elementary school teachers: Generalists versus content specialists. School Science and Mathematics, 108(5), 169–172.
  • Matsumoto, D. & Yoo, S. H. (2006) Toward a new generation of cross-cultural research. Perspectives on Psychological Science, 1(3), 234–250. doi:10.1111/j.1745-6916.2006.00014.x
  • Özkızılcık, M. & Cebesoy, Ü.B. (2020). Tasarım temelli̇ FeTeMM etki̇nli̇kleri̇ni̇n fen bi̇lgi̇si̇ öğretmen adaylarının problem çözme beceri̇leri̇ne ve fetemm öğreti̇mi̇ yöneli̇mleri̇ne etki̇si̇ni̇n i̇ncelenmesi̇. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 33(1), 177–203. doi: 10.19171/uefad.588222
  • Schumacker, R. E. ve Lomax, R. G. (1996). A beginner's guide to structural equation modeling. Lawrence Erlbaum Associates, Inc.
  • Schwartz, R. S., & Gess-Newsome, J. (2008). Elementary science specialists: A pilot study of current models and a call for participation in the research. Science Educator, 17(2), 19–30.
  • Smith, F. M., & Hausafus, C. O. (1998). Relationship of family support and ethnic minority students’ achievement in science and mathematics. Science Education, 82(1), 111–125.
  • Suna, H. E., Tanberkan, H., Gür, B. S., Perc, M., & Ozer, M. (2020). Socioeconomic status and school type as predictors of academic achievement. Journal of Economy Culture and Society, 61, 41–64. doi:10.26650/ JECS2020-0034
  • Sümer, N. (2000). Yapısal eşitlik modelleri: temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3(6), 49–74.
  • Pajares, F., & Schunk, D. H. (2001). Self-beliefs and school success: Self-efficacy, self-concept, and school achievement. In R. J. Riding & S. G. Rayner (Eds.), Self perception (pp. 239–265). Westport, CT: Ablex.
  • Pell, T., & Jarvis, T. (2001). Developing attitude to science scales for use with children of ages from five to eleven years. International Journal of Science Education, 23(8), 847–862. doi:10.1080/09500690010016111
  • Tabachnick, B. G. ve Fidell, L. S. (2007). Using multivariate statistics. New York: Allyn and Bacon/Pearson Education.
  • Tarkın-Çelikıran, A. & Aydın-Günbatar, S. (2017). Kimya öğretmen adaylarının FeTeMM uygulamaları hakkındaki görüşleri. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 1624–1656.
  • Weiss, I. R., Banilower, E. R., McMahon, K. C., & Smith, P. S. (2001). 2000 National survey of science and mathematics education. Chapel Hill, NC: Horizon Research, Inc.
  • Yaman, C. Özdemir, A. & Vural, R. A. (2018). STEM uygulamaları öğretmen öz-yeterlik ölçeğinin geliştirilmesi: Bir geçerlik ve güvenirlik çalışması. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 93–104.
  • Yıldırım, B. & Altun, Y. (2015). STEM eğitim ve mühendislik uygulamalarının fen bilgisi laboratuvar dersindeki etkilerinin incelenmesi. El-Jezeri Journal of Science and Engineering, 2(2), 28–40.
  • Yıldırım, B. & Topalcengiz, E.Ş. (2019). STEM pedagogical content knowledge scale (STEMPCK): A validity and reliability study. Journal of STEM Teacher Education, 53(2), Article 2. Retrieved from https://ir.library.illinoisstate.edu/jste/vol53/iss2/2
There are 48 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Articles
Authors

Güney Hacıömeroğlu 0000-0002-7562-9976

Publication Date November 29, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Hacıömeroğlu, G. (2020). The Reliability and Validity Study of the STEM Identity Instrument. Osmangazi Journal of Educational Research, 7(2), 1-13.