Research Article
BibTex RIS Cite

Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis

Year 2020, Volume: 5 Issue: 1, 17 - 22, 31.12.2020

Abstract

2–AMINO–5–BROMOBENZOIC ACID and its tautomeric forms have been investigated for structural properties and molecular orbitals. HOMO–LUMO surfaces and FT–IR, FT–RAMAN analysis were carried out in an integrated approach. The molecule was handled as a sum of three tautomeric forms one of which has four isomers. The molecule was examined as a whole and partially according to tautomeric forms and geometrical isomers. For quantum chemical calculations, DFT was used in the B3LYP level and 6.31G* basis set. Computations were carried out via SPARTAN 14 software.

Supporting Institution

Bursa Uludağ University, Pamukkale University,

Project Number

HZL-2014/5

Thanks

Pamukkale Ünv

References

  • 1. Hiji Y., Miyoshi M., Ichikawa O., Kasagi T., Imoto T., Effects of butyric acid and analogues on amylase release from pancreatic segments of sheep and goats, Arch. Int. Physiol. Biochem. 95 (1987) p. 113–120.
  • 2. Kar A., “Pharmacognosy and Pharmacobiotechnology”, New Age International (P) Ltd., Publishers New Delhi pp 143–146, 178,254,290–3,302–5,336,356
  • 3. Lewandowski W., Fuks L., Kalinowska M., Koczon P., The influence of selected metals on the electronic system of biologically important ligands, Spectrochim. Acta Part A 59 (2003) p. 3411–3420.
  • 4. https://caloriebee.com/nutrition/Effects–of–Benzoic–Acid–and–Benzoates–in–Food–and–Medicines(003.02.2018)
  • 5. Dr Wibbertmann A., Dr Kielhorn J., Dr Koennecker G., Dr Mangelsdorf I., and Dr Melber C.,”Benzoic Acid And Sodium Benzoate Cicad” Fraunhofer Institute for Toxicology and Aerosol Research, Hanover, Germany
  • 6. Karabacak M., Cinar M., FT–IR, FT–Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2–amino–5–bromobenzoic acid, Spectrochimica Acta Part A 86 (2012) p. 590 –599
  • 7. Saxena A., Agrawal M., Gupta A., Vibrational study, molecular properties and first-order molecular hyperpolarizability of Methyl 2–amino 5–bromobenzoate using DFT method, Optical Materials 46, 2015, p. 154–167
  • 8. Xavier T.S., Hubert.J., FT–IR, Raman and DFT study of 2–amino–5–fluorobenzoic acid and its biological activity with other halogen (Cl, Br) substitution, Spectrochimica Acta Part A, 79 (2011) p. 332–337.
  • 9. Tanaka N., Ashida T., Sasada Y., Kakudo M., Structural Determination, spectroscopic and nonlinear optical features of 2–acetamido–5–bromobenzoic acid by experimental techniques and quantum chemical calculations, Bull. Chem. Soc. Jpn. 40 (1967) p. 2717–2723.
  • 10. Pant A.K., The crystal structure of 3,5–dibromo–p–aminobenzoic acid at room temperature (25°C approx.) and at –l50°C, Acta Crystallogr. 19 (1965) p. 440–448. 11. Arshad M.N., Tahir M.N., Khan I.U., Shafiq M., Waheeda A., 4–Amino–3–bromobenzoic acid, Acta Crystallogr. E 65 (2009) p. o640
  • 12. Ferguson G., Sim G.A., Crystal structure of 2–bromo­benzoic acid at 120 K: a redetermination Acta Crystallogr. 15 (1962) p. 346–350.
  • 13. Swaminathan J., Ramalingam M., Saleem H., Sethuraman V., M.T.N. FT–IR and FT–Raman vibrational assignment of 2–bromobenzoic acid with the help of ab initio and DFT calculations Spectrochim, Acta Part A 74 (2009) p. 1247–1253.
  • 14. Sundaraganesan N., Joshua B.D., Settu K., Vibrational spectra and assignments of 5–amino–2–chlorobenzoic acid by ab initio Hartree–Fock and density functional methods Spectrochim. Acta Part A 66 (2007) p. 381–388.
  • 15. Sundaraganesan N., Joshua B.D., Vibrational spectra and fundamental structural assignments from HF and DFT calculations of methyl benzoate, Spectrochim. Acta Part A 68 (2007) p. 771–777.
  • 16. Sundaraganesan N., Ilakiamani S., Joshua B.D., FT–Raman and FT–IR spectra, ab initio and density functional studies of 2–amino–4,5–difluorobenzoic acid, Spectrochim. Acta Part A 67 (2007) p. 287–297.
  • 17. Richards R.M.E., Xing D.K.L., The effect of p–aminobenzoic acid on the uptake of thymidine and uracil by Escherichia coli Int. J. Pharm. 116 (1995) p. 217–221.
  • 18. Syahrani A., Ratnasari E., Indrayanto G., Wilkins A.L., Biotransformation of o– and p–aminobenzoic acids and N–acetyl p–aminobenzoic acid by cell suspension cultures of Solanum mammosum, Phytochemistry, 51 (1999) p. 615–620.
  • 19. Swislocka R., Samsonowicz M., Regulska E., Lewandowski W., Molecular structure of 4–aminobenzoic acid salts with alkali metals, J. Mol. Struct. 792–793 (2006) p. 227–238.
  • 20. Koczon P., Baranska H., Lewandowski W., Vibrational and NMR studies on o–, m–and p–chlorobenzoic acids, Asian J. Phys. 3 (1994) p. 71–79.
  • 21. Sundaraganesan N., Saleem H., Mohan S., FTIR and laser Raman spectra of 2–amino–5–bromobenzoic acid, Indian J. Phys. 78 (6) (2004) p. 489–494.
  • 22. SPARTAN’14 Wavefunction Inc. Irvine CA, USA, (2014) 23. Hehre W.,J., “SPARTAN’14 Tutorial and User's Guide”, 2014 Wavefunction, Inc
  • 24. Silverstein R., M., Webster F., X. Kiemle D., J. “Spectrometric Identification of Organic Compounds” 7th Ed. John Wiley Sons INC. 2005
  • 25. Ramachandran K. Deepa I., G., Namboori K., “Computational Chemistry and Molecular Modeling: Principles and Applications”, Springer–Verlag 2008 Heidelberg Berlin.
  • 26. Jensen F., “Introduction to Computational Chemistry” Wiley 2016
  • 27. Peter K., Vollhardt C., Schore N., E.. “Organic chemistry: structure and function” 6th ed. Freeman&Comp. 2011 NY–US pp. 682,731,742,870–90
Year 2020, Volume: 5 Issue: 1, 17 - 22, 31.12.2020

Abstract

Project Number

HZL-2014/5

References

  • 1. Hiji Y., Miyoshi M., Ichikawa O., Kasagi T., Imoto T., Effects of butyric acid and analogues on amylase release from pancreatic segments of sheep and goats, Arch. Int. Physiol. Biochem. 95 (1987) p. 113–120.
  • 2. Kar A., “Pharmacognosy and Pharmacobiotechnology”, New Age International (P) Ltd., Publishers New Delhi pp 143–146, 178,254,290–3,302–5,336,356
  • 3. Lewandowski W., Fuks L., Kalinowska M., Koczon P., The influence of selected metals on the electronic system of biologically important ligands, Spectrochim. Acta Part A 59 (2003) p. 3411–3420.
  • 4. https://caloriebee.com/nutrition/Effects–of–Benzoic–Acid–and–Benzoates–in–Food–and–Medicines(003.02.2018)
  • 5. Dr Wibbertmann A., Dr Kielhorn J., Dr Koennecker G., Dr Mangelsdorf I., and Dr Melber C.,”Benzoic Acid And Sodium Benzoate Cicad” Fraunhofer Institute for Toxicology and Aerosol Research, Hanover, Germany
  • 6. Karabacak M., Cinar M., FT–IR, FT–Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2–amino–5–bromobenzoic acid, Spectrochimica Acta Part A 86 (2012) p. 590 –599
  • 7. Saxena A., Agrawal M., Gupta A., Vibrational study, molecular properties and first-order molecular hyperpolarizability of Methyl 2–amino 5–bromobenzoate using DFT method, Optical Materials 46, 2015, p. 154–167
  • 8. Xavier T.S., Hubert.J., FT–IR, Raman and DFT study of 2–amino–5–fluorobenzoic acid and its biological activity with other halogen (Cl, Br) substitution, Spectrochimica Acta Part A, 79 (2011) p. 332–337.
  • 9. Tanaka N., Ashida T., Sasada Y., Kakudo M., Structural Determination, spectroscopic and nonlinear optical features of 2–acetamido–5–bromobenzoic acid by experimental techniques and quantum chemical calculations, Bull. Chem. Soc. Jpn. 40 (1967) p. 2717–2723.
  • 10. Pant A.K., The crystal structure of 3,5–dibromo–p–aminobenzoic acid at room temperature (25°C approx.) and at –l50°C, Acta Crystallogr. 19 (1965) p. 440–448. 11. Arshad M.N., Tahir M.N., Khan I.U., Shafiq M., Waheeda A., 4–Amino–3–bromobenzoic acid, Acta Crystallogr. E 65 (2009) p. o640
  • 12. Ferguson G., Sim G.A., Crystal structure of 2–bromo­benzoic acid at 120 K: a redetermination Acta Crystallogr. 15 (1962) p. 346–350.
  • 13. Swaminathan J., Ramalingam M., Saleem H., Sethuraman V., M.T.N. FT–IR and FT–Raman vibrational assignment of 2–bromobenzoic acid with the help of ab initio and DFT calculations Spectrochim, Acta Part A 74 (2009) p. 1247–1253.
  • 14. Sundaraganesan N., Joshua B.D., Settu K., Vibrational spectra and assignments of 5–amino–2–chlorobenzoic acid by ab initio Hartree–Fock and density functional methods Spectrochim. Acta Part A 66 (2007) p. 381–388.
  • 15. Sundaraganesan N., Joshua B.D., Vibrational spectra and fundamental structural assignments from HF and DFT calculations of methyl benzoate, Spectrochim. Acta Part A 68 (2007) p. 771–777.
  • 16. Sundaraganesan N., Ilakiamani S., Joshua B.D., FT–Raman and FT–IR spectra, ab initio and density functional studies of 2–amino–4,5–difluorobenzoic acid, Spectrochim. Acta Part A 67 (2007) p. 287–297.
  • 17. Richards R.M.E., Xing D.K.L., The effect of p–aminobenzoic acid on the uptake of thymidine and uracil by Escherichia coli Int. J. Pharm. 116 (1995) p. 217–221.
  • 18. Syahrani A., Ratnasari E., Indrayanto G., Wilkins A.L., Biotransformation of o– and p–aminobenzoic acids and N–acetyl p–aminobenzoic acid by cell suspension cultures of Solanum mammosum, Phytochemistry, 51 (1999) p. 615–620.
  • 19. Swislocka R., Samsonowicz M., Regulska E., Lewandowski W., Molecular structure of 4–aminobenzoic acid salts with alkali metals, J. Mol. Struct. 792–793 (2006) p. 227–238.
  • 20. Koczon P., Baranska H., Lewandowski W., Vibrational and NMR studies on o–, m–and p–chlorobenzoic acids, Asian J. Phys. 3 (1994) p. 71–79.
  • 21. Sundaraganesan N., Saleem H., Mohan S., FTIR and laser Raman spectra of 2–amino–5–bromobenzoic acid, Indian J. Phys. 78 (6) (2004) p. 489–494.
  • 22. SPARTAN’14 Wavefunction Inc. Irvine CA, USA, (2014) 23. Hehre W.,J., “SPARTAN’14 Tutorial and User's Guide”, 2014 Wavefunction, Inc
  • 24. Silverstein R., M., Webster F., X. Kiemle D., J. “Spectrometric Identification of Organic Compounds” 7th Ed. John Wiley Sons INC. 2005
  • 25. Ramachandran K. Deepa I., G., Namboori K., “Computational Chemistry and Molecular Modeling: Principles and Applications”, Springer–Verlag 2008 Heidelberg Berlin.
  • 26. Jensen F., “Introduction to Computational Chemistry” Wiley 2016
  • 27. Peter K., Vollhardt C., Schore N., E.. “Organic chemistry: structure and function” 6th ed. Freeman&Comp. 2011 NY–US pp. 682,731,742,870–90
There are 25 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Ahmet Kunduracıoğlu

Project Number HZL-2014/5
Publication Date December 31, 2020
Submission Date October 17, 2020
Published in Issue Year 2020 Volume: 5 Issue: 1

Cite

APA Kunduracıoğlu, A. (2020). Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis. Open Journal of Nano, 5(1), 17-22.
AMA Kunduracıoğlu A. Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis. OJN. December 2020;5(1):17-22.
Chicago Kunduracıoğlu, Ahmet. “Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis”. Open Journal of Nano 5, no. 1 (December 2020): 17-22.
EndNote Kunduracıoğlu A (December 1, 2020) Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis. Open Journal of Nano 5 1 17–22.
IEEE A. Kunduracıoğlu, “Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis”, OJN, vol. 5, no. 1, pp. 17–22, 2020.
ISNAD Kunduracıoğlu, Ahmet. “Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis”. Open Journal of Nano 5/1 (December 2020), 17-22.
JAMA Kunduracıoğlu A. Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis. OJN. 2020;5:17–22.
MLA Kunduracıoğlu, Ahmet. “Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis”. Open Journal of Nano, vol. 5, no. 1, 2020, pp. 17-22.
Vancouver Kunduracıoğlu A. Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis. OJN. 2020;5(1):17-22.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.