Tautomeric Forms of 2–Amino–5–Bromobenzoic Acid: A DFT Study for Structural and Molecular Orbital Analysis
Yıl 2020,
Cilt: 5 Sayı: 1, 17 - 22, 31.12.2020
Ahmet Kunduracıoğlu
Öz
2–AMINO–5–BROMOBENZOIC ACID and its tautomeric forms have been investigated for structural properties and molecular orbitals. HOMO–LUMO surfaces and FT–IR, FT–RAMAN analysis were carried out in an integrated approach. The molecule was handled as a sum of three tautomeric forms one of which has four isomers. The molecule was examined as a whole and partially according to tautomeric forms and geometrical isomers. For quantum chemical calculations, DFT was used in the B3LYP level and 6.31G* basis set. Computations were carried out via SPARTAN 14 software.
Destekleyen Kurum
Bursa Uludağ University, Pamukkale University,
Proje Numarası
HZL-2014/5
Kaynakça
- 1. Hiji Y., Miyoshi M., Ichikawa O., Kasagi T., Imoto T., Effects of butyric acid and analogues on amylase release from pancreatic segments of sheep and goats, Arch. Int. Physiol. Biochem. 95 (1987) p. 113–120.
- 2. Kar A., “Pharmacognosy and Pharmacobiotechnology”, New Age International (P) Ltd., Publishers New Delhi pp 143–146, 178,254,290–3,302–5,336,356
- 3. Lewandowski W., Fuks L., Kalinowska M., Koczon P., The influence of selected metals on the electronic system of biologically important ligands, Spectrochim. Acta Part A 59 (2003) p. 3411–3420.
- 4. https://caloriebee.com/nutrition/Effects–of–Benzoic–Acid–and–Benzoates–in–Food–and–Medicines(003.02.2018)
- 5. Dr Wibbertmann A., Dr Kielhorn J., Dr Koennecker G., Dr Mangelsdorf I., and Dr Melber C.,”Benzoic Acid And Sodium Benzoate Cicad” Fraunhofer Institute for Toxicology and Aerosol Research, Hanover, Germany
- 6. Karabacak M., Cinar M., FT–IR, FT–Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2–amino–5–bromobenzoic acid, Spectrochimica Acta Part A 86 (2012) p. 590 –599
- 7. Saxena A., Agrawal M., Gupta A., Vibrational study, molecular properties and first-order molecular hyperpolarizability of Methyl 2–amino 5–bromobenzoate using DFT method, Optical Materials 46, 2015, p. 154–167
- 8. Xavier T.S., Hubert.J., FT–IR, Raman and DFT study of 2–amino–5–fluorobenzoic acid and its biological activity with other halogen (Cl, Br) substitution, Spectrochimica Acta Part A, 79 (2011) p. 332–337.
- 9. Tanaka N., Ashida T., Sasada Y., Kakudo M., Structural Determination, spectroscopic and nonlinear optical features of 2–acetamido–5–bromobenzoic acid by experimental techniques and quantum chemical calculations, Bull. Chem. Soc. Jpn. 40 (1967) p. 2717–2723.
- 10. Pant A.K., The crystal structure of 3,5–dibromo–p–aminobenzoic acid at room temperature (25°C approx.) and at –l50°C, Acta Crystallogr. 19 (1965) p. 440–448.
11. Arshad M.N., Tahir M.N., Khan I.U., Shafiq M., Waheeda A., 4–Amino–3–bromobenzoic acid, Acta Crystallogr. E 65 (2009) p. o640
- 12. Ferguson G., Sim G.A., Crystal structure of 2–bromobenzoic acid at 120 K: a redetermination Acta Crystallogr. 15 (1962) p. 346–350.
- 13. Swaminathan J., Ramalingam M., Saleem H., Sethuraman V., M.T.N. FT–IR and FT–Raman vibrational assignment of 2–bromobenzoic acid with the help of ab initio and DFT calculations Spectrochim, Acta Part A 74 (2009) p. 1247–1253.
- 14. Sundaraganesan N., Joshua B.D., Settu K., Vibrational spectra and assignments of 5–amino–2–chlorobenzoic acid by ab initio Hartree–Fock and density functional methods Spectrochim. Acta Part A 66 (2007) p. 381–388.
- 15. Sundaraganesan N., Joshua B.D., Vibrational spectra and fundamental structural assignments from HF and DFT calculations of methyl benzoate, Spectrochim. Acta Part A 68 (2007) p. 771–777.
- 16. Sundaraganesan N., Ilakiamani S., Joshua B.D., FT–Raman and FT–IR spectra, ab initio and density functional studies of 2–amino–4,5–difluorobenzoic acid, Spectrochim. Acta Part A 67 (2007) p. 287–297.
- 17. Richards R.M.E., Xing D.K.L., The effect of p–aminobenzoic acid on the uptake of thymidine and uracil by Escherichia coli Int. J. Pharm. 116 (1995) p. 217–221.
- 18. Syahrani A., Ratnasari E., Indrayanto G., Wilkins A.L., Biotransformation of o– and p–aminobenzoic acids and N–acetyl p–aminobenzoic acid by cell suspension cultures of Solanum mammosum, Phytochemistry, 51 (1999) p. 615–620.
- 19. Swislocka R., Samsonowicz M., Regulska E., Lewandowski W., Molecular structure of 4–aminobenzoic acid salts with alkali metals, J. Mol. Struct. 792–793 (2006) p. 227–238.
- 20. Koczon P., Baranska H., Lewandowski W., Vibrational and NMR studies on o–, m–and p–chlorobenzoic acids, Asian J. Phys. 3 (1994) p. 71–79.
- 21. Sundaraganesan N., Saleem H., Mohan S., FTIR and laser Raman spectra of 2–amino–5–bromobenzoic acid, Indian J. Phys. 78 (6) (2004) p. 489–494.
- 22. SPARTAN’14 Wavefunction Inc. Irvine CA, USA, (2014)
23. Hehre W.,J., “SPARTAN’14 Tutorial and User's Guide”, 2014 Wavefunction, Inc
- 24. Silverstein R., M., Webster F., X. Kiemle D., J. “Spectrometric Identification of Organic Compounds” 7th Ed. John Wiley Sons INC. 2005
- 25. Ramachandran K. Deepa I., G., Namboori K., “Computational Chemistry and Molecular Modeling: Principles and Applications”, Springer–Verlag 2008 Heidelberg Berlin.
- 26. Jensen F., “Introduction to Computational Chemistry” Wiley 2016
- 27. Peter K., Vollhardt C., Schore N., E.. “Organic chemistry: structure and function” 6th ed. Freeman&Comp. 2011 NY–US pp. 682,731,742,870–90