Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Sürekli Elyaf Takviyeli Termoplastik Kompozitlere Uygulanan Isıl İşlemlerin Mekanik Özelliklere Etkisi

Year 2022, Volume 7, Issue 1, 10 - 17, 30.06.2022

Abstract

Bu çalışmada, farklı ısıl işlemlerin sürekli elyaf takviyeli termoplastik (CFRTP)'ler üzerindeki etkileri araştırılmıştır. CFRTP kompoziti, eklemeli imalat yöntemlerinden biri olan kaynaşmış biriktirme modellemesi (FDM) kullanılarak üretilir. Matris olarak polilaktik asit (PLA), takviye malzemesi olarak karbon fiberler (3K) kullanılmıştır. İlk olarak, özel olarak tasarlanmış bir eriyik emdirme hattında CFRTP filamenti üretildi. Daha sonra geleneksel bir 3D yazıcı ile test örnekleri üretildi. Daha sonra üretilen numunelere ısıl işlemler (tuzda yeniden eritme, mikrodalga fırın, fırında) uygulanmış ve bu işlemlerin mekanik özelliklere etkileri araştırılmıştır. Test numunelerinin mekanik özelliklerini araştırmak için üç nokta eğilme testleri kullanılmıştır. CFRTP numunelere uygulanan ısıl işlemler sonucunda 200 ile 220 MPa arasında eğilme gerilmeleri elde edilmiştir. En yüksek eğilme gerilimi tuzda yeniden eritilerek elde edilmiştir. Isıl işlemler sonucunda gerilme değerleri benzer ancak tuz uygulamasında yeniden ergitme daha rijit bir davranış sergilemiştir.

References

  • [1] Kruth JP, Leu MC, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Ann - Manuf Technol. 1998;47:525–540.
  • [2] Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus Horiz. 2017;60:677
  • [3] Wout De Backer. Multi-Axis Multi-Material Fused Filament Fabrication with Continuous Fiber Reinforcement by Wout De Backer Bachelor of Science Delft University of Technology 2011 Master of Science Delft University of Technology 2013 Submitted in Partial Fulfillment of th. 2017;
  • [4] Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172–196.
  • [5] Spoerk M, Arbeiter F, Cajner H, et al. Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J Appl Polym Sci. 2017;134:1–15.
  • [6] Coogan TJ, Kazmer DO. Bond and part strength in fused deposition modeling. Rapid Prototyp J. 2017;23:414–422
  • [7] Krajangsawasdi N, Blok LG, Hamerton I, et al. Fused deposition modelling of fibre reinforced polymer composites: A parametric review. J Compos Sci. 2021;5.
  • [8] Yan M, Tian X, Peng G, et al. High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos Sci Technol. 2018;165:140–147.
  • [9] Williams DF, McNamara A, Turner RM. Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications. J Mater Sci Lett. 1987;6:188–190.
  • [10] Ravi AK, Deshpande A, Hsu KH. An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Process. 2016;24:179–185.
  • [11] Shaffer S, Yang K, Vargas J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer (Guildf). 2014;55:5969–5979.
  • [12] Du J, Wei Z, Wang X, et al. An improved fused deposition modeling process for forming large-size thin-walled parts. J Mater Process Technol. 2016;234:332–341.
  • [13] Günay M, Gündüz S, Yılmaz H, et al. PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu. J Polytech. 2019;0900:73–79.
  • [14] Ning F, Cong W, Hu Y, et al. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J Compos Mater. 2017;51:451–462.
  • [15] Jo W, Kwon OC, Moon MW. Investigation of influence of heat treatment on mechanical strength of FDM printed 3D objects. Rapid Prototyp J. 2018;24:637–644.
  • [16] Nakagawa Y, Mori Kichiro, Maeno T. 3D printing of carbon fibre-reinforced plastic parts. Int J Adv Manuf Technol. 2017;91:2811–2817.
  • [17] Caminero MA, Chacón JM, García-Moreno I et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym Test. 2018;68:415–423.
  • [18] Matsuzaki R, Ueda M, Namiki M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep. 2016;6:1–7.
  • [19] Iragi M, Pascual-González C, Esnaola A, et al. Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure. Addit Manuf. 2019;30:100884.
  • [20] R. Gümrük And A. Uşun, "Additive Manufacturing of Continuous Fiber-Reinforced Composites with High Mechanical Properties From PLA Thermoplastic Resin by Fused Deposition Method," TICMET'20, Gaziantep, Turkey, pp.196-203, 2020

The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties

Year 2022, Volume 7, Issue 1, 10 - 17, 30.06.2022

Abstract

This study investigated the effects of different heat treatments on continuous fiber-reinforced thermoplastic (CFRTP) 's. CFRTP composite is produced using fused deposition modeling (FDM), which is one of the additive manufacturing methods. Polylactic acid (PLA) was used as a matrix, and carbon fibers (3K) were utilized as reinforcement material. First, CFRTP filament was produced on a specially designed melt impregnation line. Afterward, test samples were manufactured via a conventional 3D printer. Then, heat treatments (re-melting in salt, microwave oven, oven) were applied to the produced samples, and the effects of these processes on mechanical properties were investigated. Three-point bending tests were used to investigate the mechanical properties of the test samples. As a result of the heat treatments applied to the CFRTP specimens, flexural stresses between 200 and 220 MPa was achieved. The highest bending stress was obtained by re-melting in salt. As a result of the heat treatments, the stress values are similar, but the re-melting in salt application exhibited a more rigid behavior.

References

  • [1] Kruth JP, Leu MC, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Ann - Manuf Technol. 1998;47:525–540.
  • [2] Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus Horiz. 2017;60:677
  • [3] Wout De Backer. Multi-Axis Multi-Material Fused Filament Fabrication with Continuous Fiber Reinforcement by Wout De Backer Bachelor of Science Delft University of Technology 2011 Master of Science Delft University of Technology 2013 Submitted in Partial Fulfillment of th. 2017;
  • [4] Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172–196.
  • [5] Spoerk M, Arbeiter F, Cajner H, et al. Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J Appl Polym Sci. 2017;134:1–15.
  • [6] Coogan TJ, Kazmer DO. Bond and part strength in fused deposition modeling. Rapid Prototyp J. 2017;23:414–422
  • [7] Krajangsawasdi N, Blok LG, Hamerton I, et al. Fused deposition modelling of fibre reinforced polymer composites: A parametric review. J Compos Sci. 2021;5.
  • [8] Yan M, Tian X, Peng G, et al. High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos Sci Technol. 2018;165:140–147.
  • [9] Williams DF, McNamara A, Turner RM. Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications. J Mater Sci Lett. 1987;6:188–190.
  • [10] Ravi AK, Deshpande A, Hsu KH. An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Process. 2016;24:179–185.
  • [11] Shaffer S, Yang K, Vargas J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer (Guildf). 2014;55:5969–5979.
  • [12] Du J, Wei Z, Wang X, et al. An improved fused deposition modeling process for forming large-size thin-walled parts. J Mater Process Technol. 2016;234:332–341.
  • [13] Günay M, Gündüz S, Yılmaz H, et al. PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu. J Polytech. 2019;0900:73–79.
  • [14] Ning F, Cong W, Hu Y, et al. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J Compos Mater. 2017;51:451–462.
  • [15] Jo W, Kwon OC, Moon MW. Investigation of influence of heat treatment on mechanical strength of FDM printed 3D objects. Rapid Prototyp J. 2018;24:637–644.
  • [16] Nakagawa Y, Mori Kichiro, Maeno T. 3D printing of carbon fibre-reinforced plastic parts. Int J Adv Manuf Technol. 2017;91:2811–2817.
  • [17] Caminero MA, Chacón JM, García-Moreno I et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym Test. 2018;68:415–423.
  • [18] Matsuzaki R, Ueda M, Namiki M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep. 2016;6:1–7.
  • [19] Iragi M, Pascual-González C, Esnaola A, et al. Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure. Addit Manuf. 2019;30:100884.
  • [20] R. Gümrük And A. Uşun, "Additive Manufacturing of Continuous Fiber-Reinforced Composites with High Mechanical Properties From PLA Thermoplastic Resin by Fused Deposition Method," TICMET'20, Gaziantep, Turkey, pp.196-203, 2020

Details

Primary Language English
Subjects Engineering, Materials Science, Biomaterials
Journal Section Research Article
Authors

Bahri Barış VATANDAŞ (Primary Author)
KARADENİZ TEKNİK ÜNİVERSİTESİ
0000-0002-5358-0374
Türkiye


Recep GÜMRÜK
KARADENİZ TEKNİK ÜNİVERSİTESİ
0000-0002-1447-523X
Türkiye


Altuğ UŞUN
KARADENİZ TEKNİK ÜNİVERSİTESİ
0000-0003-0773-9548
Türkiye


Nuri YILDIZ
KARADENİZ TEKNİK ÜNİVERSİTESİ
0000-0001-9563-7335
Türkiye

Supporting Institution This work was supported by The Scientific and Technical Research Council of Turkey (TÜBİTAK) with grant number 120M717 and the Office of Scientific Research Projects of Karadeniz Technical University, Turkey, with the grant number FBA-2020-8974
Project Number 120M717
Early Pub Date March 3, 2022
Publication Date June 30, 2022
Published in Issue Year 2022, Volume 7, Issue 1

Cite

Bibtex @research article { ojn1034323, journal = {Open Journal of Nano}, issn = {}, eissn = {2147-0081}, address = {Sakarya Üniversitesi Fatih Mah. Eşit Sok. No:7/A -11 54580 - Arifiye / SAKARYA}, publisher = {Mustafa CAN}, year = {2022}, volume = {7}, pages = {10 - 17}, doi = {}, title = {The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties}, key = {cite}, author = {Vatandaş, Bahri Barış and Gümrük, Recep and Uşun, Altuğ and Yıldız, Nuri} }
APA Vatandaş, B. B. , Gümrük, R. , Uşun, A. & Yıldız, N. (2022). The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties . Open Journal of Nano , 7 (1) , 10-17 . Retrieved from https://dergipark.org.tr/en/pub/ojn/issue/66849/1034323
MLA Vatandaş, B. B. , Gümrük, R. , Uşun, A. , Yıldız, N. "The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties" . Open Journal of Nano 7 (2022 ): 10-17 <https://dergipark.org.tr/en/pub/ojn/issue/66849/1034323>
Chicago Vatandaş, B. B. , Gümrük, R. , Uşun, A. , Yıldız, N. "The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties". Open Journal of Nano 7 (2022 ): 10-17
RIS TY - JOUR T1 - The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties AU - Bahri Barış Vatandaş , Recep Gümrük , Altuğ Uşun , Nuri Yıldız Y1 - 2022 PY - 2022 N1 - DO - T2 - Open Journal of Nano JF - Journal JO - JOR SP - 10 EP - 17 VL - 7 IS - 1 SN - -2147-0081 M3 - UR - Y2 - 2022 ER -
EndNote %0 Open Journal of Nano The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties %A Bahri Barış Vatandaş , Recep Gümrük , Altuğ Uşun , Nuri Yıldız %T The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties %D 2022 %J Open Journal of Nano %P -2147-0081 %V 7 %N 1 %R %U
ISNAD Vatandaş, Bahri Barış , Gümrük, Recep , Uşun, Altuğ , Yıldız, Nuri . "The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties". Open Journal of Nano 7 / 1 (June 2022): 10-17 .
AMA Vatandaş B. B. , Gümrük R. , Uşun A. , Yıldız N. The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties. ojn. 2022; 7(1): 10-17.
Vancouver Vatandaş B. B. , Gümrük R. , Uşun A. , Yıldız N. The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties. Open Journal of Nano. 2022; 7(1): 10-17.
IEEE B. B. Vatandaş , R. Gümrük , A. Uşun and N. Yıldız , "The Effect of Heat Treatments Applied to Continuous Fiber Reinforced Thermoplastic Composites on Mechanical Properties", Open Journal of Nano, vol. 7, no. 1, pp. 10-17, Jun. 2022

ISSN: 2147-0081
All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.