Research Article
BibTex RIS Cite

Pıtrak (Xanthium strumarium L.) Meyve Olgunluk Seviyesinin Meyve Yağ Asitlerinin Üzerinde Etkisinin Belirlenmesi

Year 2022, , 998 - 1007, 18.07.2022
https://doi.org/10.47495/okufbed.1129833

Abstract

Pıtrak biyokimyasal içeriği ile çok değerli bir tıbbi bitki olup, enerji kaynağı olarak da değerlendirilmektedir. Son zamanlarda pıtrağın biyodizel olarak kullanılması bu bitkiyi araştırmacıların ilgi odağı haline getirmiştir. Bununla birlikte, amaca doğru uygulaması için bu tür yağların kalitesini etkileyen faktörleri değerlendirmek için daha fazla çalışmalara ihtiyaç vardır. Bu çalışmada, Türkiye'nin Osmaniye ilinden tohumları da dahil olmak üzere bütün meyvelerinin olgun ve olgunlaşmamış yağının yağ asidi profili araştırılmıştır. Olgunlaşmamış örnekte %50,17 ile oleik asit en fazla yağ asidi olmasına rağmen, olgun örnekte miktarı (%25,96) daha az bulunmuştur. Olgun meyveler olgunlaşmamış meyvelere nazaran (%56.09) daha yüksek miktarda doymamış yağ oranına (%81.34) sahiptir. Bu sonuçlar, olgunlaşma durumunun pıtrak meyve yağ asitlerinin konsantrasyonunu ve oranlarını önemli ölçüde etkilediğini göstermiştir. Bu çalışma, hem endüstride hem de biyodizel üretiminde uygulama için nitelikli tohum yağlarının değerlendirilmesi konusunda uluslararası araştırmacılara ışık tutacaktır.

References

  • Alyari H., F. Shekari and Shekari F. Oil Seed Crops (Agronomy and physiology), Amidi Press, 2000,Tabriz, Iran.
  • Aranjani JM., Manuel A., Mallikarjuna Rao C., Udupa N., Rao JV., Joy AM., ... & Radhakrishnan E. K. Preliminary evaluation of in vitro cytotoxicity and in vivo antitumor activity of Xanthium strumarium in transplantable tumors in mice. The American journal of Chinese medicine, 2013; 41: 145-162.
  • Arslan B. The determination of oil content and fatty acid compositions of domestic and exotic safflower (Carthamus tinctorius L.) Genotypes and their interactions. Journal of Agronomy 2007; 6(3): 415-420.
  • Baydar H. ve Erbaş S. Yağ Bitkileri Bilimi ve Teknolojisi, S.D.Ü. Ziraat Fakültesi Yay. No. 97, Isparta, 2014.
  • Canvin DT. Formation of oil in the seed of Ricinus communis L. Canadian Journal of Biochemistry and Physiology 1963; 41(9): 1879-1885.
  • Cesur C., and Şenkal BÇ. Pıtrak (Xanthium strumarium L.) Bitkisinin Kültüre Alınma Potansiyelinin İncelenmesi. KSÜ Doğa Bilimleri Dergisi 2016; 19(1): 72-75.
  • Cesur C., Şenkal BC., Uskutoğlu T., Yaman C., & Yurteri T. Pıtrak (Xanthium strumarium L.) Tohumlarının En Uygun Çimlendirme Metotlarının Belirlenmesi Üzerine Bir Araştırma. Türkiye Tarımsal Araştırmalar Dergisi 2017; 4(2): 124-130.
  • Cesur C., Eryilmaz T., Uskutoğlu T., Doğan H., & Şenkal BC. Cocklebur (Xanthium strumarium L.) seed oil and its properties as an alternative biodiesel source. Turkish Journal of Agriculture and Forestry, 2018; 42(1): 29-37.
  • Chang F., Hanna MA., Zhang DJ., Li H., Zhou Q., Song BA., & Yang S. Production of biodiesel from non-edible herbaceous vegetable oil: Xanthium sibiricum Patr. Bioresource Technology 2013; 14: 435-438.
  • Cheng-Jiang R., Wei-He X., Silva JAT. Potential of five plants growing on unproductive agricultural lands as biodiesel resources. Renewable Energy 2012; 41(1): 191-199. Eymirli S., & Torun H. Distribution area of Xanthium strumarium L. in Çukurova region. Türkiye Herboloji Dergisi 2015; 18(3): 44-45.
  • Fan W., Fan L., Peng C., Zhang Q., Wang L., Li L., ... & Wu C. Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: a review. Molecules 2019; 24(2): 359
  • Genel Y., Durak H., Aysu T., & Genel I. Effect of process parameters on supercritical liquefaction of Xanthium strumarium for bio-oil production. The Journal of Supercritical Fluids 2016; 115: 42-53.
  • Hasheminejad M., Tabatabaei M., Mansourpanah Y., Khatami Far M., Javani A. Upstream and downstream strategies to economize biodiesel production. Bioresour Technol 2011; 102: 461- 468.
  • Holm LG., Pancho JV., Herberger JP., Plucknett DL. A Geographic Atlas of World Weeds. Malabar, Florida, USA: Krieger Publishing Company, 1991. Hook M., & Tang X. Depletion of fossil fuels and anthropogenic climate change-A review. Energy policy, 2013; 52: 797-809.
  • ISO 12966-2. Animal and vegetable fats and oils – Gas chromatography of fatty acid methyl esters – Part 2: Preparation of methyl esters of fatty acids, 2011.
  • Kamboj A., & Saluja AK. Phytopharmacological review of Xanthium strumarium L.(Cocklebur). International Journal of Green Pharmacy 2010; 4(3): 129-139.
  • Karaca E., and Aytaç S. Yağ bitkilerinde yağ asitleri kompozisyonu üzerine etki eden faktörler. Anadolu Tarım Bilimleri Dergisi 2007; 22(1): 123-131.
  • Kim YS., Kim JS., Park SH., Choi SU., Lee CO., Kim SK., Kim YK., Kim SH., Ryu SY. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase. Planta Med 2003; 69: 375-377.
  • Kumar S., and Rajkapoor B. Effect of Xanthium strumarium L. extracts on antioxidant enzymes levels in rat brain after induction of epilepsy. Pharmacology Online 2010; 2: 883-888.
  • Lee JM. Common Cocklebur (Xanthium strumarium L.). Iowa State University, The ISU Weed Biology Library, Agronomy No: 517, USA, 1996.
  • Nagel JM., Wang X., Lewis J D., Fung HA., Tissue DT., & Griffin KL. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium. New Phytologist 2005; 166(2): 513-523.
  • Onemli F. Impact of climate change on oil fatty acid composition of peanut (Arachis hypogaea L.) in three market classes. Chilean Journal of Agricultural Research 2012; 72(4): 483.
  • Patil MVK., Kandhare AD., and Bhise SD. Anti-arthritic and anti-inflammatory activity of Xanthium srtumarium L. ethanolic extract in Freund's complete adjuvant induced arthritis. Biomedicine & Aging Pathology 2012; 2(1): 6-15.
  • Piloto Ferrer J., Cozzi R., Cornetta T., Stano P., Fiore M., Degrassi F., ... & Sánchez-Lamar A. Xanthium strumarium L. extracts produce DNA damage mediated by cytotoxicity in in vitro assays but does not induce micronucleus in mice. BioMed Research International 2014; https://doi.org/10.1155/2014/575197.
  • Romero M., Zanuy M., Rosell E., Cascante M., Piulats J., Font-Bardia M., et al. Optimization of xanthatin extraction from Xanthium spinosum L. and its cytotoxic, anti-angiogenesis and antiviral properties. Eur J Med Chem 2015; 90: 491-496.
  • Salimon J., Noor DAM., Nazrizawati A., & Noraishah A. Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malaysiana 2010; 39.
  • Scherer R., & Godoy HT. Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidant activity. Revista Brasileira de Plantas Medicinais 2014; 16(1): 41-46.
  • Uskutoğlu T., Cesur C., Şenkal BC., and Duygu AĞAR. Pıtrak (Xanthium strumarium L.) Bitkisinin Farklı Açılardan Değerlendirilmesi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 2018; 28(1): 113-118.
  • Wei-He X., Cheng-Jiang R. Oil contents and relative components of fatty acid in the seeds of five energy plants. Renewable Energy Resources 2010; 28(2): 62-66.

The Effect of Maturation Status on Fatty Acid Profile of Xanthium strumarium L. Fruits Oil

Year 2022, , 998 - 1007, 18.07.2022
https://doi.org/10.47495/okufbed.1129833

Abstract

Cocklebur is a very precious medicinal plant due to its biochemical contents with antioxidant, antimicrobial, and antioxidants. It can also be evaluated as a source of energy. Cocklebur seeds and seed oil is not edible and contains 67% more biomass than cotton. Therefore, it can be evaluated as a sustainable energy source. Recently, the use of cocklebur as biodiesel makes this plant a point of interest for researchers. However, more studies are needed for evaluating factors that affect the quality of this kind of oil for the desired application. The fatty acid profile of matured and immature oil of cocklebur whole fruits including seeds from Osmaniye province in Turkey was investigated in this study. Although the main fatty acid in the immature sample was oleic acid with 50.17%, its amount (25.96%) decreased in mature sample oil converting linoleic acid which is the major fatty acid of cocklebur seed oil. Mature fruit oil had a higher amount of USFA (81.34%) than immature fruit oil (56.09%). These results showed that maturation status significantly affected the concentration and rates of fatty acids in studied Cocklebur. This study will help international researchers evaluate qualified seed oils for application in industry and biodiesel production.

References

  • Alyari H., F. Shekari and Shekari F. Oil Seed Crops (Agronomy and physiology), Amidi Press, 2000,Tabriz, Iran.
  • Aranjani JM., Manuel A., Mallikarjuna Rao C., Udupa N., Rao JV., Joy AM., ... & Radhakrishnan E. K. Preliminary evaluation of in vitro cytotoxicity and in vivo antitumor activity of Xanthium strumarium in transplantable tumors in mice. The American journal of Chinese medicine, 2013; 41: 145-162.
  • Arslan B. The determination of oil content and fatty acid compositions of domestic and exotic safflower (Carthamus tinctorius L.) Genotypes and their interactions. Journal of Agronomy 2007; 6(3): 415-420.
  • Baydar H. ve Erbaş S. Yağ Bitkileri Bilimi ve Teknolojisi, S.D.Ü. Ziraat Fakültesi Yay. No. 97, Isparta, 2014.
  • Canvin DT. Formation of oil in the seed of Ricinus communis L. Canadian Journal of Biochemistry and Physiology 1963; 41(9): 1879-1885.
  • Cesur C., and Şenkal BÇ. Pıtrak (Xanthium strumarium L.) Bitkisinin Kültüre Alınma Potansiyelinin İncelenmesi. KSÜ Doğa Bilimleri Dergisi 2016; 19(1): 72-75.
  • Cesur C., Şenkal BC., Uskutoğlu T., Yaman C., & Yurteri T. Pıtrak (Xanthium strumarium L.) Tohumlarının En Uygun Çimlendirme Metotlarının Belirlenmesi Üzerine Bir Araştırma. Türkiye Tarımsal Araştırmalar Dergisi 2017; 4(2): 124-130.
  • Cesur C., Eryilmaz T., Uskutoğlu T., Doğan H., & Şenkal BC. Cocklebur (Xanthium strumarium L.) seed oil and its properties as an alternative biodiesel source. Turkish Journal of Agriculture and Forestry, 2018; 42(1): 29-37.
  • Chang F., Hanna MA., Zhang DJ., Li H., Zhou Q., Song BA., & Yang S. Production of biodiesel from non-edible herbaceous vegetable oil: Xanthium sibiricum Patr. Bioresource Technology 2013; 14: 435-438.
  • Cheng-Jiang R., Wei-He X., Silva JAT. Potential of five plants growing on unproductive agricultural lands as biodiesel resources. Renewable Energy 2012; 41(1): 191-199. Eymirli S., & Torun H. Distribution area of Xanthium strumarium L. in Çukurova region. Türkiye Herboloji Dergisi 2015; 18(3): 44-45.
  • Fan W., Fan L., Peng C., Zhang Q., Wang L., Li L., ... & Wu C. Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: a review. Molecules 2019; 24(2): 359
  • Genel Y., Durak H., Aysu T., & Genel I. Effect of process parameters on supercritical liquefaction of Xanthium strumarium for bio-oil production. The Journal of Supercritical Fluids 2016; 115: 42-53.
  • Hasheminejad M., Tabatabaei M., Mansourpanah Y., Khatami Far M., Javani A. Upstream and downstream strategies to economize biodiesel production. Bioresour Technol 2011; 102: 461- 468.
  • Holm LG., Pancho JV., Herberger JP., Plucknett DL. A Geographic Atlas of World Weeds. Malabar, Florida, USA: Krieger Publishing Company, 1991. Hook M., & Tang X. Depletion of fossil fuels and anthropogenic climate change-A review. Energy policy, 2013; 52: 797-809.
  • ISO 12966-2. Animal and vegetable fats and oils – Gas chromatography of fatty acid methyl esters – Part 2: Preparation of methyl esters of fatty acids, 2011.
  • Kamboj A., & Saluja AK. Phytopharmacological review of Xanthium strumarium L.(Cocklebur). International Journal of Green Pharmacy 2010; 4(3): 129-139.
  • Karaca E., and Aytaç S. Yağ bitkilerinde yağ asitleri kompozisyonu üzerine etki eden faktörler. Anadolu Tarım Bilimleri Dergisi 2007; 22(1): 123-131.
  • Kim YS., Kim JS., Park SH., Choi SU., Lee CO., Kim SK., Kim YK., Kim SH., Ryu SY. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase. Planta Med 2003; 69: 375-377.
  • Kumar S., and Rajkapoor B. Effect of Xanthium strumarium L. extracts on antioxidant enzymes levels in rat brain after induction of epilepsy. Pharmacology Online 2010; 2: 883-888.
  • Lee JM. Common Cocklebur (Xanthium strumarium L.). Iowa State University, The ISU Weed Biology Library, Agronomy No: 517, USA, 1996.
  • Nagel JM., Wang X., Lewis J D., Fung HA., Tissue DT., & Griffin KL. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium. New Phytologist 2005; 166(2): 513-523.
  • Onemli F. Impact of climate change on oil fatty acid composition of peanut (Arachis hypogaea L.) in three market classes. Chilean Journal of Agricultural Research 2012; 72(4): 483.
  • Patil MVK., Kandhare AD., and Bhise SD. Anti-arthritic and anti-inflammatory activity of Xanthium srtumarium L. ethanolic extract in Freund's complete adjuvant induced arthritis. Biomedicine & Aging Pathology 2012; 2(1): 6-15.
  • Piloto Ferrer J., Cozzi R., Cornetta T., Stano P., Fiore M., Degrassi F., ... & Sánchez-Lamar A. Xanthium strumarium L. extracts produce DNA damage mediated by cytotoxicity in in vitro assays but does not induce micronucleus in mice. BioMed Research International 2014; https://doi.org/10.1155/2014/575197.
  • Romero M., Zanuy M., Rosell E., Cascante M., Piulats J., Font-Bardia M., et al. Optimization of xanthatin extraction from Xanthium spinosum L. and its cytotoxic, anti-angiogenesis and antiviral properties. Eur J Med Chem 2015; 90: 491-496.
  • Salimon J., Noor DAM., Nazrizawati A., & Noraishah A. Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malaysiana 2010; 39.
  • Scherer R., & Godoy HT. Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidant activity. Revista Brasileira de Plantas Medicinais 2014; 16(1): 41-46.
  • Uskutoğlu T., Cesur C., Şenkal BC., and Duygu AĞAR. Pıtrak (Xanthium strumarium L.) Bitkisinin Farklı Açılardan Değerlendirilmesi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 2018; 28(1): 113-118.
  • Wei-He X., Cheng-Jiang R. Oil contents and relative components of fatty acid in the seeds of five energy plants. Renewable Energy Resources 2010; 28(2): 62-66.
There are 29 citations in total.

Details

Primary Language English
Subjects Botany
Journal Section RESEARCH ARTICLES
Authors

Mozhgan Zarıfıkhosroshahı 0000-0001-5491-1430

Zeynep Ergun 0000-0002-9868-9488

Publication Date July 18, 2022
Submission Date June 13, 2022
Acceptance Date June 27, 2022
Published in Issue Year 2022

Cite

APA Zarıfıkhosroshahı, M., & Ergun, Z. (2022). The Effect of Maturation Status on Fatty Acid Profile of Xanthium strumarium L. Fruits Oil. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 998-1007. https://doi.org/10.47495/okufbed.1129833
AMA Zarıfıkhosroshahı M, Ergun Z. The Effect of Maturation Status on Fatty Acid Profile of Xanthium strumarium L. Fruits Oil. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. July 2022;5(2):998-1007. doi:10.47495/okufbed.1129833
Chicago Zarıfıkhosroshahı, Mozhgan, and Zeynep Ergun. “The Effect of Maturation Status on Fatty Acid Profile of Xanthium Strumarium L. Fruits Oil”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 2 (July 2022): 998-1007. https://doi.org/10.47495/okufbed.1129833.
EndNote Zarıfıkhosroshahı M, Ergun Z (July 1, 2022) The Effect of Maturation Status on Fatty Acid Profile of Xanthium strumarium L. Fruits Oil. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 998–1007.
IEEE M. Zarıfıkhosroshahı and Z. Ergun, “The Effect of Maturation Status on Fatty Acid Profile of Xanthium strumarium L. Fruits Oil”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 5, no. 2, pp. 998–1007, 2022, doi: 10.47495/okufbed.1129833.
ISNAD Zarıfıkhosroshahı, Mozhgan - Ergun, Zeynep. “The Effect of Maturation Status on Fatty Acid Profile of Xanthium Strumarium L. Fruits Oil”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (July 2022), 998-1007. https://doi.org/10.47495/okufbed.1129833.
JAMA Zarıfıkhosroshahı M, Ergun Z. The Effect of Maturation Status on Fatty Acid Profile of Xanthium strumarium L. Fruits Oil. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:998–1007.
MLA Zarıfıkhosroshahı, Mozhgan and Zeynep Ergun. “The Effect of Maturation Status on Fatty Acid Profile of Xanthium Strumarium L. Fruits Oil”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, 2022, pp. 998-1007, doi:10.47495/okufbed.1129833.
Vancouver Zarıfıkhosroshahı M, Ergun Z. The Effect of Maturation Status on Fatty Acid Profile of Xanthium strumarium L. Fruits Oil. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(2):998-1007.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.