Research Article
BibTex RIS Cite

Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach

Year 2024, , 2284 - 2303, 10.12.2024
https://doi.org/10.47495/okufbed.1457674

Abstract

Manual segmentation of patient CT images is both time-consuming and labor-intensive. Additionally, classic image processing techniques are insufficient in CT images due to the close pixel values of tissues. Automatic segmentation of the aorta in human anatomy can reduce healthcare workers' workload in preoperative planning. This study compares the performance of the AKG-Unet segmentation model with other models (U-Net, Inception UNetv2, LinkNet, SegNet, and Res-Unet) on thoracic aorta, abdominal aorta, and iliac arteries segmentation in contrast CT images. Initially, pixel intensities in the Kits and Rider datasets were recalibrated. Then, 2D axial images underwent resizing and grayscale normalization. Segmentation models have been trained and tested with 5-fold cross-validation. 2D prediction masks were stacked to generate a 3D output, and spatial information was transferred to the predicted mask. In the 3B aortic segmentation, small objects adjacent to it were removed using image processing techniques. In our study, the AKG-UNET model achieved the highest segmentation results on the AVT dataset with a Dice score of 91.2%, Intersection-Over-Union (IoU) score of 85.6%, sensitivity of 90.9%, and specificity of 99%. A method has been proposed that helps physicians analyze the aortic structure, and segments the aortic structure so that they can intervene in the correct location and make a preoperative evaluation.

Supporting Institution

AKGUN Computer Incorporated Company.

Thanks

This paper has been prepared by AKGUN Computer Incorporated Company. We would like to thank AKGUN Computer Inc. for providing all kinds of opportunities and funds for the execution of this project.

References

  • Aldoj N., Biavati F., Michallek F., Stober S., Dewey M. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Scientific Reports 2020;10(1):1-17.
  • Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2017;39(12):2481-2495.
  • Benčevi´benčevi´c M., Habijan M., Gali´cgali´c I., Babin D. Using the Polar Transform for Efficient Deep Learning-Based Aorta Segmentation in CTA Images. International Symposium ELMAR 2022 Sep 12, pp. 191-194.
  • Bonechi S., Andreini P., Mecocci A., Giannelli N., Scarselli F., Neri E., Bianchini M., Dimitri GM. Segmentation of Aorta 3D CT Images Based on 2D Convolutional Neural Networks. Electronics 2021;10(20):2559.
  • Brutti F., Fantazzini A., Finotello A., Müller LO., Auricchio F., Pane B., Spinella G., Conti M. Deep learning to automatically segment and analyze abdominal aortic aneurysm from computed tomography angiography. Springer. 2022;13(4):535-547.
  • Chaurasia A., Culurciello E. LinkNet: Exploiting encoder representations for efficient semantic segmentation 2017 IEEE Visual Communications and Image Processing, 1-4 January 2018.
  • Chollet F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition 2017:1251-1258.
  • Dasgupta A, Mukhopadhyay S, Mehre SA, Bhattacharyya P. Morphological geodesic active contour based automatic aorta segmentation in thoracic CT images. Proceedings of International Conference on

AAort Segmentasyonunu Kontrastlı Bilgisayarlı Tomografi Görüntülerinde Geliştirme: Yenilikçi Derin Mimari Yaklaşımı

Year 2024, , 2284 - 2303, 10.12.2024
https://doi.org/10.47495/okufbed.1457674

Abstract

Hasta bilgisayarlı tomografi (BT) görüntülerinin manuel segmentasyonu hem zaman alıcı hem de emek yoğun bir işlemdir. Ayrıca, doku piksel değerlerinin yakınlığı nedeniyle BT görüntülerinde klasik görüntü işleme teknikleri yetersizdir. İnsan anatomisinde aortun otomatik olarak segmentasyonu, ameliyat öncesi planlamada sağlık çalışanlarının iş yükünü azaltabilir. Bu çalışma, kontrastlı BT görüntülerinde torasik aorta, abdominal aorta ve iliak arterlerin segmentasyonunda AKG-Unet segmentasyon modelinin diğer modellerle (U-Net, Inception UNetv2, LinkNet, SegNet ve Res-Unet) performansını karşılaştırır. İlk olarak, Kits ve Rider veri kümelerinde piksel yoğunlukları yeniden kalibre edildi. Daha sonra, 2B eksenel görüntüler yeniden boyutlandırıldı ve gri tonlaması normalleştirildi. Segmentasyon modelleri 5 katlı çapraz doğrulama yöntemi ile eğitilip test edilmiştir. 2B tahmin maskeleri üst üste eklenilerek 3B bir çıktı elde edildi ve tahmin edilen maskeye mekansal bilgi aktarıldı. 3B aortik segmentasyonun yanındaki küçük nesneler görüntü işleme teknikleri ile kaldırıldı. Çalışmamızda, AKG-UNET modeli, AVT veri setinde Dice skoru %91.2, IoU skoru %85.6, hassasiyet %90.9 ve özgüllük %99 ile en yüksek segmentasyon sonuçlarını elde etti. Doktorların aortik yapıyı analiz etmelerine yardımcı olacak ve doğru konumda müdahale edebilmeleri ve ameliyat öncesi değerlendirme yapabilmeleri için aortik yapının segmentasyonunu yapacak bir yöntem önerilmiştir.

References

  • Aldoj N., Biavati F., Michallek F., Stober S., Dewey M. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Scientific Reports 2020;10(1):1-17.
  • Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2017;39(12):2481-2495.
  • Benčevi´benčevi´c M., Habijan M., Gali´cgali´c I., Babin D. Using the Polar Transform for Efficient Deep Learning-Based Aorta Segmentation in CTA Images. International Symposium ELMAR 2022 Sep 12, pp. 191-194.
  • Bonechi S., Andreini P., Mecocci A., Giannelli N., Scarselli F., Neri E., Bianchini M., Dimitri GM. Segmentation of Aorta 3D CT Images Based on 2D Convolutional Neural Networks. Electronics 2021;10(20):2559.
  • Brutti F., Fantazzini A., Finotello A., Müller LO., Auricchio F., Pane B., Spinella G., Conti M. Deep learning to automatically segment and analyze abdominal aortic aneurysm from computed tomography angiography. Springer. 2022;13(4):535-547.
  • Chaurasia A., Culurciello E. LinkNet: Exploiting encoder representations for efficient semantic segmentation 2017 IEEE Visual Communications and Image Processing, 1-4 January 2018.
  • Chollet F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition 2017:1251-1258.
  • Dasgupta A, Mukhopadhyay S, Mehre SA, Bhattacharyya P. Morphological geodesic active contour based automatic aorta segmentation in thoracic CT images. Proceedings of International Conference on
There are 8 citations in total.

Details

Primary Language English
Subjects Deep Learning
Journal Section RESEARCH ARTICLES
Authors

Ömer Faruk Bozkır 0000-0002-3696-3613

Ataberk Urfalı 0000-0001-5709-6718

Azer Çelikten 0000-0002-6804-737X

Semih Demirel 0000-0002-3454-3631

Abdulkadir Budak 0000-0002-0328-6783

Hakan Karataş 0000-0002-9497-5444

Murat Ceylan 0000-0001-6503-9668

Publication Date December 10, 2024
Submission Date March 23, 2024
Acceptance Date July 8, 2024
Published in Issue Year 2024

Cite

APA Bozkır, Ö. F., Urfalı, A., Çelikten, A., Demirel, S., et al. (2024). Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(5), 2284-2303. https://doi.org/10.47495/okufbed.1457674
AMA Bozkır ÖF, Urfalı A, Çelikten A, Demirel S, Budak A, Karataş H, Ceylan M. Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. December 2024;7(5):2284-2303. doi:10.47495/okufbed.1457674
Chicago Bozkır, Ömer Faruk, Ataberk Urfalı, Azer Çelikten, Semih Demirel, Abdulkadir Budak, Hakan Karataş, and Murat Ceylan. “Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, no. 5 (December 2024): 2284-2303. https://doi.org/10.47495/okufbed.1457674.
EndNote Bozkır ÖF, Urfalı A, Çelikten A, Demirel S, Budak A, Karataş H, Ceylan M (December 1, 2024) Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 5 2284–2303.
IEEE Ö. F. Bozkır, A. Urfalı, A. Çelikten, S. Demirel, A. Budak, H. Karataş, and M. Ceylan, “Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 7, no. 5, pp. 2284–2303, 2024, doi: 10.47495/okufbed.1457674.
ISNAD Bozkır, Ömer Faruk et al. “Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/5 (December 2024), 2284-2303. https://doi.org/10.47495/okufbed.1457674.
JAMA Bozkır ÖF, Urfalı A, Çelikten A, Demirel S, Budak A, Karataş H, Ceylan M. Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7:2284–2303.
MLA Bozkır, Ömer Faruk et al. “Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 7, no. 5, 2024, pp. 2284-03, doi:10.47495/okufbed.1457674.
Vancouver Bozkır ÖF, Urfalı A, Çelikten A, Demirel S, Budak A, Karataş H, Ceylan M. Enhancing Aorta Segmentation in Contrast CT Images: A Novel Deep Architectural Approach. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7(5):2284-303.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.