Research Article
BibTex RIS Cite

Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar

Year 2022, , 56 - 65, 08.03.2022
https://doi.org/10.47495/okufbed.971101

Abstract

α ve β sıfırdan farklı pozitif tamsayılar olmak üzere, Z_2^α×Z_4^β nın alt grupları olarak tanımlanan Z_2 Z_4-toplamsal kodlar araştırmacılar tarafından son yıllarda oldukça ilgi görmüştür. Bu kod ailesine benzer bir kod sınıfı Z_2^r×(Z_2+uZ_2 )^s üzerindeki kodlardır. Bu kodlar Z_2 Z_4-toplamsal kodlara göre bazı avantajlara sahiptir. Bir kodun tüm kodsözleri aynı ağırlığa sahipse bu kod bir-(sabit) ağırlıklı kod olarak tanımlanır. Bu çalışmada, Z_2^r×(Z_2+uZ_2 )^s üzerindeki relatif iki-ağırlıklı kodlar çalışılmıştır. İlk olarak, iki-mesafeli bir Z_2 Z_2 [u]-lineer kodun Gray görüntüsünün ikili iki-mesafeli bir kod olduğu gösterilmiştir. Daha sonra relatif iki-ağırlıklı bir Z_2 Z_2 [u]-lineer kodun Gray görüntüsün ikili relatif iki-ağırlıklı bir kod olduğu ispatlanmıştır. Ayrıca, bu kodların duallerinin genellikle relatif iki-ağırlıklı kod olmadıkları örneklerle gösterilmiştir. Son olarak, relatif iki-ağırlıklı bir Z_2 Z_2 [u]-lineer kodun yapısı belirlenmiştir.

References

  • Dougherty ST., Liu H., Yu, L. One weight Z_2 Z_4-additive codes. Applic. Algebra in Eng. Com. and Comput., 2016; 27(2), 123-138.
  • Bonisoli A. Every equidistant linear code is a sequence of dual Hamming codes. Ars Combinatoria, 1983, 18, 181–186.
  • Carlet C. One-weight Z_4-linear codes. In: Buchmann, J., Hoholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptogr. and Related Areas, Springer, Berlin, 2000, 57–72.
  • Wood JA. The structure of linear codes of constant weight. Trans. of the American Math. Soc., 2002, 354, 1007–102.
  • Borges J., Fernàndez-Córdoba C., Pujol J., Rifà J., Villanueva M. Z_2 Z_4-linear codes: generator matrices and duality. Des. Codes Cryptogr., 2010, 54(2), 167-179.
  • Bilal M., Borges J., Dougherty ST., Fernàndez-Córdoba C. Maximum distance separable codes over Z_4 and Z_2×Z_4. Des. Codes Cryptogr., 2011, 61, 31-40.
  • Fernàndez-Córdoba C., Pujol J., Villanueva M. Z_2 Z_4-linear codes:rank and kernel. Des. Codes Cryptogr., 2010, 56, 43-59.
  • Aydogdu, I. The structure of one-weight linear and cyclic codes over Z_2+uZ_2 Codes. An Inter. J. of Opt. and Control: Theories and Applications, 2018, 8(1), 92-101.
  • Çalışkan B. On One-Weight and ACD Codes in Z_2^r×Z_4^s×Z_8^t. Filomat, 2021, 35(3).
  • Liu Z., Chen W. Notes on the value function. Des. Codes Cryptogr., 2010, 54(1), 11-19.
  • Liu Z., Chen W., Sun Z., Zeng X. Further results on support weights of certain subcodes. Des. Codes Cryptogr., 2011, 61(2), 119-129.
  • Annamalai N., Durairajan C. Relative two-weight Z_2 Z_4- additive codes. Inter. J. of Computer &.Math. Sciences, 2016, 5(11), 30-34.
  • Aydogdu I., Abualrub T., Siap I. On Z_2 Z_2 [u]-additive codes. Inter. J. Computer Math., 2015, 92, 1806-1814.
  • Aydoğdu İ. Bazı özel modüller üzerinde toplamsal kodlar, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı, sayfa no: 78, İstanbul, Türkiye, 2014.

Relative Two-Weight Z_2 Z_2 [u]-Linear Codes

Year 2022, , 56 - 65, 08.03.2022
https://doi.org/10.47495/okufbed.971101

Abstract

Z_2 Z_4-additive codes, defined as subgroups of Z_2^α×Z_4^β where α and β are positive integers, have been considered by researchers for last years. The family of these codes are similar to the class of codes over Z_2^r×(Z_2+uZ_2 )^s. These codes have some advantages compared to Z_2 Z_4-additive codes. A code is called constant weight (one-weight) if all the nonzero codewords have the same weight. In this study, relative two-weight codes over Z_2^r×(Z_2+uZ_2 )^s are considered. Firstly, it is shown that the Gray image of a two-distance Z_2 Z_2 [u]-linear code is a binary two-distance code. Then, it is proven that the Gray image of a relative two-weight Z_2 Z_2 [u]-linear code, with nontrivial binary part, is a binary relative two-weight code. Also, it is shown that the duals of these codes are not relative two-weight codes generally by using examples. Finally, the structure of relative two-weight Z_2 Z_2 [u]-linear codes are determined.

References

  • Dougherty ST., Liu H., Yu, L. One weight Z_2 Z_4-additive codes. Applic. Algebra in Eng. Com. and Comput., 2016; 27(2), 123-138.
  • Bonisoli A. Every equidistant linear code is a sequence of dual Hamming codes. Ars Combinatoria, 1983, 18, 181–186.
  • Carlet C. One-weight Z_4-linear codes. In: Buchmann, J., Hoholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptogr. and Related Areas, Springer, Berlin, 2000, 57–72.
  • Wood JA. The structure of linear codes of constant weight. Trans. of the American Math. Soc., 2002, 354, 1007–102.
  • Borges J., Fernàndez-Córdoba C., Pujol J., Rifà J., Villanueva M. Z_2 Z_4-linear codes: generator matrices and duality. Des. Codes Cryptogr., 2010, 54(2), 167-179.
  • Bilal M., Borges J., Dougherty ST., Fernàndez-Córdoba C. Maximum distance separable codes over Z_4 and Z_2×Z_4. Des. Codes Cryptogr., 2011, 61, 31-40.
  • Fernàndez-Córdoba C., Pujol J., Villanueva M. Z_2 Z_4-linear codes:rank and kernel. Des. Codes Cryptogr., 2010, 56, 43-59.
  • Aydogdu, I. The structure of one-weight linear and cyclic codes over Z_2+uZ_2 Codes. An Inter. J. of Opt. and Control: Theories and Applications, 2018, 8(1), 92-101.
  • Çalışkan B. On One-Weight and ACD Codes in Z_2^r×Z_4^s×Z_8^t. Filomat, 2021, 35(3).
  • Liu Z., Chen W. Notes on the value function. Des. Codes Cryptogr., 2010, 54(1), 11-19.
  • Liu Z., Chen W., Sun Z., Zeng X. Further results on support weights of certain subcodes. Des. Codes Cryptogr., 2011, 61(2), 119-129.
  • Annamalai N., Durairajan C. Relative two-weight Z_2 Z_4- additive codes. Inter. J. of Computer &.Math. Sciences, 2016, 5(11), 30-34.
  • Aydogdu I., Abualrub T., Siap I. On Z_2 Z_2 [u]-additive codes. Inter. J. Computer Math., 2015, 92, 1806-1814.
  • Aydoğdu İ. Bazı özel modüller üzerinde toplamsal kodlar, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı, sayfa no: 78, İstanbul, Türkiye, 2014.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section RESEARCH ARTICLES
Authors

Basri Çalışkan

Veysel Çelik 0000-0001-7062-6402

Publication Date March 8, 2022
Submission Date July 13, 2021
Acceptance Date September 20, 2021
Published in Issue Year 2022

Cite

APA Çalışkan, B., & Çelik, V. (2022). Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 56-65. https://doi.org/10.47495/okufbed.971101
AMA Çalışkan B, Çelik V. Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). March 2022;5(1):56-65. doi:10.47495/okufbed.971101
Chicago Çalışkan, Basri, and Veysel Çelik. “Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 1 (March 2022): 56-65. https://doi.org/10.47495/okufbed.971101.
EndNote Çalışkan B, Çelik V (March 1, 2022) Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 1 56–65.
IEEE B. Çalışkan and V. Çelik, “Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), vol. 5, no. 1, pp. 56–65, 2022, doi: 10.47495/okufbed.971101.
ISNAD Çalışkan, Basri - Çelik, Veysel. “Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/1 (March 2022), 56-65. https://doi.org/10.47495/okufbed.971101.
JAMA Çalışkan B, Çelik V. Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2022;5:56–65.
MLA Çalışkan, Basri and Veysel Çelik. “Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 1, 2022, pp. 56-65, doi:10.47495/okufbed.971101.
Vancouver Çalışkan B, Çelik V. Relatif İki-Ağırlıklı Z_2 Z_2 [u]-Lineer Kodlar. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2022;5(1):56-65.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.