Let A and B be 2 × 2 non-zero complex matrices. Let P be a linear combination of A and B in the form of P=c_1 A+c_2 B where c_1,c_2 are nonzero scalar numbers. An idempotent matrix is a matrix which, when multiplied by itself, yields itself. In this study, we established the entries of idempotent matrix B according to a given A idempotent matrix such that P is also be an idempotent matrix. In addition, the result was obtained that this determined P matrix is a singular matrix.
A ve B, 2×2 tipinde sıfır olmayan kompleks matrisler olsun. c_1,c_2 sıfırdan farklı skaler sayılar olmak üzere P, A ile B nin P=c_1 A+c_2 B formunda olan bir lineer kombinasyonu olsun. Bir idempotent matris, kendisiyle çarpıldığında kendisini veren bir matristir. Bu çalışmada, verilen A idempotent matrisine göre, B idempotent matrisinin bileşenleri, P matrisi de idempotent olacak şekilde belirlenmiştir. Ayrıca belirlenen bu P matrisinin singüler matris olduğu sonucu elde edilmiştir.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | RESEARCH ARTICLES |
Authors | |
Publication Date | June 1, 2021 |
Submission Date | November 8, 2020 |
Acceptance Date | January 28, 2021 |
Published in Issue | Year 2021 Volume: 4 Issue: 2 |
*This journal is an international refereed journal
*Our journal does not charge any article processing fees over publication process.
* This journal is online publishes 5 issues per year (January, March, June, September, December)
*This journal published in Turkish and English as open access.
* This work is licensed under a Creative Commons Attribution 4.0 International License.