Research Article
BibTex RIS Cite

On the idempotents of semigroup of partial contractions of a finite chain

Year 2021, Volume: 4 Issue: 3, 242 - 249, 15.12.2021
https://doi.org/10.47495/okufbed.799385

Abstract

Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively.

References

  • Ali, B., Umar, A. and Zubairu, M. M. Regularity and Green’s relations on the semigroup of partial contractions of a finite chain. arXiv:1803.02146v1.
  • Adeshola, A. D. and Umar, A. Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. J. Combin. Math. Combin. Comput. 106, (2018) 37-49.
  • Clifford, A. H. and Preston, G.B. The algebraic theory of semigroups, vol.1. Providence, R. I.: American Mathematical Society, 1961.
  • Garba, G. U. Idempotents in partial transformation semifroups. Proc. Roy. Soc. Edinburghn 116 A. (1990), 359-366.
  • Gracinda, M. S. Gomes and Howie, J. M. On the ranks of certain semigroups of order preserving transformations. Semigroup Forum 45 (1992), 272-282.
  • Ganyushkin, O. and Mazorchuk, V. Classical Finite Transformation Semigroups. Springer−Verlag: London Limited (2009).
  • Howie, J. M. Product of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 17 (1971) 223-236.
  • Howie, J. M . Fundamental of semigroup theory. London Mathematical Society, New series 12. The Clarendon Press, Oxford University Press, 1995.
  • Laradji, A. and Umar A. Combinatorial results for semifroups of order preserving partial transformations. Journal of Algebra 278 (2004), 342-358.
  • Tainter, T. A characterization of idempotents in semigroups. J. Combinatorial Theory 5 (1968) 370-373.
  • Umar, A. Some combinatorial problems in the theory of partial transformation semigroups. Journal of Algebra and Discrete Mathematics 17 (2014) 1 110-134.
  • Umar, A. and Zubairu, M. M. On certain semigroups of partial contractions of a finite chain. arXiv:1803.02604.
  • Umar, A. and Zubairu, M. M. On certain semigroups of full contractions of a finite chain. arXiv:1804.10057.

On the idempotents of semigroup of partial contractions of a finite chain

Year 2021, Volume: 4 Issue: 3, 242 - 249, 15.12.2021
https://doi.org/10.47495/okufbed.799385

Abstract

Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively.

References

  • Ali, B., Umar, A. and Zubairu, M. M. Regularity and Green’s relations on the semigroup of partial contractions of a finite chain. arXiv:1803.02146v1.
  • Adeshola, A. D. and Umar, A. Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. J. Combin. Math. Combin. Comput. 106, (2018) 37-49.
  • Clifford, A. H. and Preston, G.B. The algebraic theory of semigroups, vol.1. Providence, R. I.: American Mathematical Society, 1961.
  • Garba, G. U. Idempotents in partial transformation semifroups. Proc. Roy. Soc. Edinburghn 116 A. (1990), 359-366.
  • Gracinda, M. S. Gomes and Howie, J. M. On the ranks of certain semigroups of order preserving transformations. Semigroup Forum 45 (1992), 272-282.
  • Ganyushkin, O. and Mazorchuk, V. Classical Finite Transformation Semigroups. Springer−Verlag: London Limited (2009).
  • Howie, J. M. Product of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 17 (1971) 223-236.
  • Howie, J. M . Fundamental of semigroup theory. London Mathematical Society, New series 12. The Clarendon Press, Oxford University Press, 1995.
  • Laradji, A. and Umar A. Combinatorial results for semifroups of order preserving partial transformations. Journal of Algebra 278 (2004), 342-358.
  • Tainter, T. A characterization of idempotents in semigroups. J. Combinatorial Theory 5 (1968) 370-373.
  • Umar, A. Some combinatorial problems in the theory of partial transformation semigroups. Journal of Algebra and Discrete Mathematics 17 (2014) 1 110-134.
  • Umar, A. and Zubairu, M. M. On certain semigroups of partial contractions of a finite chain. arXiv:1803.02604.
  • Umar, A. and Zubairu, M. M. On certain semigroups of full contractions of a finite chain. arXiv:1804.10057.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section RESEARCH ARTICLES
Authors

Muhammad Mansur Zubairu

Bashir Ali This is me

Publication Date December 15, 2021
Submission Date September 24, 2020
Acceptance Date March 14, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Zubairu, M. M., & Ali, B. (2021). On the idempotents of semigroup of partial contractions of a finite chain. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(3), 242-249. https://doi.org/10.47495/okufbed.799385
AMA Zubairu MM, Ali B. On the idempotents of semigroup of partial contractions of a finite chain. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. December 2021;4(3):242-249. doi:10.47495/okufbed.799385
Chicago Zubairu, Muhammad Mansur, and Bashir Ali. “On the Idempotents of Semigroup of Partial Contractions of a Finite Chain”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4, no. 3 (December 2021): 242-49. https://doi.org/10.47495/okufbed.799385.
EndNote Zubairu MM, Ali B (December 1, 2021) On the idempotents of semigroup of partial contractions of a finite chain. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4 3 242–249.
IEEE M. M. Zubairu and B. Ali, “On the idempotents of semigroup of partial contractions of a finite chain”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 4, no. 3, pp. 242–249, 2021, doi: 10.47495/okufbed.799385.
ISNAD Zubairu, Muhammad Mansur - Ali, Bashir. “On the Idempotents of Semigroup of Partial Contractions of a Finite Chain”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4/3 (December 2021), 242-249. https://doi.org/10.47495/okufbed.799385.
JAMA Zubairu MM, Ali B. On the idempotents of semigroup of partial contractions of a finite chain. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2021;4:242–249.
MLA Zubairu, Muhammad Mansur and Bashir Ali. “On the Idempotents of Semigroup of Partial Contractions of a Finite Chain”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 4, no. 3, 2021, pp. 242-9, doi:10.47495/okufbed.799385.
Vancouver Zubairu MM, Ali B. On the idempotents of semigroup of partial contractions of a finite chain. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2021;4(3):242-9.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.