Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively.
Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | RESEARCH ARTICLES |
Authors | |
Publication Date | December 15, 2021 |
Submission Date | September 24, 2020 |
Acceptance Date | March 14, 2021 |
Published in Issue | Year 2021 Volume: 4 Issue: 3 |
*This journal is an international refereed journal
*Our journal does not charge any article processing fees over publication process.
* This journal is online publishes 5 issues per year (January, March, June, September, December)
*This journal published in Turkish and English as open access.
* This work is licensed under a Creative Commons Attribution 4.0 International License.